Supporting information

Ultrathin Carbon Coated CoO Nanosheet Arrays as Efficient Electrocatalysts

for Hydrogen Evolution Reaction

Weiyang Jin,^{a,b} Xiaoliang Guo,^{a,b} Jun Zhang,^{*,a,b} Lekai Zheng,^{a,b} Fang Liu,^{a,b} Yongchuan Hu,^{a,b} Jing Mao,^c Hui Liu,^{*,a} Yanming Xue,^{a,b} Chengchun Tang^{a,b}

^aSchool of Material Science and Engineering, Hebei University of Technology, Dingzigu Road 1, Tianjin 300130, P. R. China

^bHebei Key Laboratory of Boron Nitride Micro and Nano Materials, Guangrongdao Road 29, Tianjin 300130, P. R. China

^cSchool of Materials Science and Engineering, Tianjin University, Tianjin Haihe Education Park, Tianjin 300072, PR China

E-mail address: junnano@gmail.com (J. Zhang), liuhuihebut@163.com (H. Liu)

Figure. S1 The photographs of C@CoO/CC and C@CoO/NF under bending.

Figure. S2 The FTIR spectra of C@CoO and glucose.

Figure. S3 (a) SEM image of C@CoO/NF and corresponding elemental mappings for C, Co and O atoms. (b) TEM image of C@CoO and corresponding elemental mappings for C, Co and O atoms.

Figure. S4 The amount of gas theoretically calculated and experimentally measured versus time on cathode (C@CoO/CC) and anode (Carbon rod).

Figure. S5 (a) LSV curves of the C@CoO/CC prepared under different conditions with a scan rate of 2 mV s⁻¹ for HER in 1.0 M KOH. (b) The corresponding Tafel plots derived from (a). (c) Nyquist plots for HER tested at -0.15 V (vs. RHE). (d) The double layer capacity C_{dl} of electrocatalysts.

Figure S6. Different scan rates of CVs of C@CoO/CC prepared under different conditions.

Figure S7. Different scan rates of CVs of (a) CoO/CC and (b) C@CoO/CC.

Figure S8. (a) The XRD pattern, (b) SEM, (c) TEM and (d, e) HRTEM images of C@CoO/CC after long-term durability test. (f) the screenshot of ten times for lattice spacing.

Figure S9. (a) XPS survey spectra and (b) Co 2p for C@CoO after long-term durability test.

Catalyst	Substrate	Electrolyte	η @-10mA cm ⁻² (mV vs RHE)	Tafel slope (mV dec ⁻¹)	Ref.
C@CoO	CC ^a	1M KOH	-120	129	This work
Ni/NiO-CNT	GCE ^b	1M KOH	~ -100	82	1
NiCo ₂ O ₄ @NiO@Ni	NF ^c	1M KOH	-124	58	2
Ni-NiO/N-rGO	NF	1M KOH	-135	46	3
Co ₃ O ₄ -MTA	NF	1M KOH	-190 (20 mA cm ⁻²)	98	4
CoO/MoS ₂	CC	1M KOH	-173	83	5
Cu ₂ O/Co ₃ O ₄ /DC	GCE	$0.5M H_2 SO_4$	-160	73	6
FeCoO	NF	1M KOH	-205	118	7
Co ₃ O ₄ @BNC	GCE	1M KOH	-178	100.3	8
NiFe LDH	NF	1M NaOH	-210	-	9
CoO/MoO _x	NF	1M KOH	-163	44	10
Co/CoO/BC	GCE	1M KOH	-210	93.3	11
Co ₃ O ₄	NF	1M KOH	-225	53	12
NiO/Co ₃ O ₄	GCE	1M KOH	>-600	61	13
Co ₃ O ₄ /MoS ₂	NF	1M KOH	-205	128	14
C-Co ₃ O ₄	TM ^d	1M KOH	-163	89	15
Co ₃ O ₄ /Co ₄ N	CC	1M KOH	-90	58	16

 Table S1. Comparison of HER performances of C@CoO/CC with previously

 reported transition metal oxide-based HER electrocatalysts.

CC^a: Carbon cloth; GCE^b: Glassy carbon electrode; NF^c: Ni foam; TM^d: Ti mesh

Reference

- M. Gong, W. Zhou, M.-C. Tsai, J. Zhou, M. Guan, M.-C. Lin, B. Zhang, Y. Hu, D.-Y. Wang, J. Yang, S. J. Pennycook, B.-J. Hwang and H. Dai, *Nat. Commun.*, 2014, 5, 4695.
- L. Wang, C. Gu, X. Ge, J. Zhang, H. Zhu and J. Tu, Part. Part. Sys. Charact., 2017, 34, 1700228.
- X. Liu, W. Liu, M. Ko, M. Park, M. G. Kim, P. Oh, S. Chae, S. Park, A. Casimir, G. Wu and J. Cho, *Adv. Funct. Mater.*, 2015, 25, 5799-5808.
- 4. Y. P. Zhu, T. Y. Ma, M. Jaroniec and S. Z. Qiao, Angew. Chem. Int. Ed., 2017, 56, 1324-1328.
- P. Cheng, C. Yuan, Q. Zhou, X. Hu, J. Li, X. Lin, X. Wang, M. Jin, L. Shui, X. Gao, R. Nötzel, G. Zhou, Z. Zhang and J. Liu, *J. Phys. Chem. C*, 2019, **123**, 5833-5839.
- 6. W. Jin and J. Chen, New J. Chem., 2018, 42, 19400-19406.
- H. A. Bandal, A. R. Jadhav, A. H. Tamboli and H. Kim, *Electrochim. Acta*, 2017, 249, 253-262.
- D. Tang, X. Sun, H. Yu, W. Zhang, L. Zhang, X. Li, Z.-A. Qiao, J. Zhu and Z. Zhao, *Dalton Trans.*, 2019, 48, 7261-7266.
- J. Luo, J.-H. Im, M. T. Mayer, M. Schreier, M. K. Nazeeruddin, N.-G. Park, S. D. Tilley, H. J. Fan and M. Grätzel, *Science*, 2014, 345, 1593.
- X. Yan, L. Tian, S. Atkins, Y. Liu, J. Murowchick and X. Chen, ACS Sustainable Chem. Eng., 2016, 4, 3743-3749.
- 11. M. Yang, D. Wu and D. Cheng, Int. J. Hydrogen Energy, 2019, 44, 6525-6534.
- R. Li, D. Zhou, J. Luo, W. Xu, J. Li, S. Li, P. Cheng and D. Yuan, *J. Power Sources*, 2017, 341, 250-256.
- A. QayoomMugheri, AneelaTahira, U. Aftab, M. IshaqAbro, S. R. Chaudhry, L. Amaral and Z. H. Ibupoto, *Electrochim. Acta*, 2019, **306**, 9-17.
- 14. A. Muthurasu, V. Maruthapandian and H. Y. Kim, *Appl. Catal. B: Environ.*, 2019, **248**, 202-210.
- 15. D. Yan, R. Chen, Z. Xiao and S. Wang, *Electrochim. Acta*, 2019, **303**, 316-322.
- B. Liu, J. Cheng, H.-Q. Peng, D. Chen, X. Cui, D. Shen, K. Zhang, T. Jiao, M. Li, C.-S. Lee and W. Zhang, *J. Mater. Chem. A*, 2019, 7, 775-782.