Supporting Information

Insight into the impact of Al distributions on catalytic performance of 1-octene aromatization over ZSM-5 zeolite

Liwei Zhang, ^{a,c} Huaike Zhang, ^{a,b} Zhiqiang Chen, ^{a,c} Qiang Ning, ^{a,b} Suyao Liu, ^{b*} Jie Ren, ^{a,b*} Xiaodong Wen, ^{a,b} Yong-Wang Li ^{a,b}

^a State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, PR China

^b National Energy Research Center for Clean Fuels, Synfuels China Co., Ltd, Beijing, 101400, PR China
 ^c University of Chinese Academy of Sciences, Beijing 100049, PR China

* Corresponding authors: Suyao Liu (liusuyao@synfuelschina.com.cn, Tel.: +86 010 6068 3824); Jie Ren (renjie@sxicc.ac.cn, Tel.: +86 010 6966 7855)

Alkylation of benzene with 1-octene was carried out in the same fixed-bed stainless-steel reactor as the 1-octene aromatization. In a typical experiment, the pre-treatment of the ZSM-5-S zeolite catalyst was the same to the 1-octene aromatization. When the reaction temperature decreased to the target temperature (380 °C), the feedstock with a molar ratio of 1-octene to benzene of 2.0 was fed into the reactor at a certain flow rate. The reaction conditions for this catalytic test were the following: pressure was 1.0 MPa, volume ratio of N₂/feed was 300, and the liquid hourly space velocity (LHSV) was set at 2.0 h⁻¹. The products collection and analysis method were the same to the 1-octene aromatization. In each experiment, the carbon balance was maintained above 95%. The calculations method of conversion and selectivity were shown as follows:

Conversion of 1 – octene (%) =
$$\frac{w_0 - w_1}{w_0} \times 100$$

Conversion of benzene (%) = $\frac{w_2 - w_3}{w_2} \times 100$
Products Selectivity (%) = $\frac{w_i}{w_0 - w_1} \times 100$

 w_0 and w_1 represent the weights of 1-octene in the feed and product, respectively; w_2

and w_3 represent the weights of benzene in the feed and product, respectively; w_i denotes the weight of products which reactant converted to.

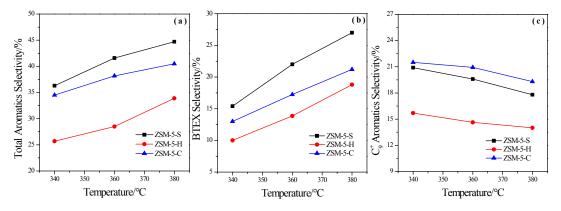


Fig. S1 Total aromatics (a), BTEX (b) and C_{9^+} (c) selectivity over ZSM-5-S, ZSM-5-H, and ZSM-5-C catalysts for 1-octene aromatization.

(Reaction conditions: time on steam = 6.0 h, pressure = 1.0 MPa, $N_2/1$ -octene = 300, LHSV = 2.0 h⁻¹.)

					for 1-0	octene	aroma	tizatic	n							
Catalysts	1-octene		Products Selectivity (%) ^a													
	con. (%) ^a	CH ₄	C ₂	C_{3}^{0}	$C_3^{=}$	C_4^0	$C_4^{=}$	C_{5}^{0}	$C_{5}^{=}$	C_6^0	$C_6^{=}$	C_7^0	$C_7^{=}$	C_8^0	$C_8^=$	C_9^+
ZSM-5-S	99.9	0.1	0.7	17.7	0.3	14.6	0.3	6.5	0.2	3.0	0.6	1.3	0.9	2.5	2.5	0.2
ZSM-5-H	99.9	0.1	0.8	15.2	0.6	18.7	0.3	9.5	0.5	4.2	1.0	2.2	1.2	2.3	4.3	1.5
ZSM-5-C	99.4	0.2	0.8	20.1	0.3	12.3	0.7	6.0	0.8	4.7	0.8	1.5	1.1	1.7	4.7	1.8

 Table S1 1-octene conversion and products selectivity over different ZSM-5 catalyst

 for 1-octene aromatization

Products Selectivity (%) ^a												
Cycloalkane	Benzene	Toluene	Ethylbenzene	Xylene	C ₉ aromatics	C ₁₀ aromatics	C ₁₁ ⁺ aromatics	BETX	Total Aromatics			
1.4	2.2	10.3	1.7	12.8	7.1	2.2	8.5	27.0	44.7			
3.5	1.3	7.3	1.6	8.6	6.4	2.4	6.3	18.8	33.9			
1.7	1.8	8.2	1.6	9.6	6.3	3.9	9.1	21.2	40.5			

^a the 1-octene conversion and products selectivity are estimated with the time on steam of 6.0 h;

 $C_i^{=}$ and C_i^{0} mean the alkene and alkane hydrocarbon with i carbon atom, respectively; Reaction conditions: pressure = 1.0 MPa, temperature =380 °C, N₂/1-octene = 300, LHSV = 2.0 h⁻¹.

Table S2 1-octene and benzene conversion as well as the products selectivity overZSM-5-S catalyst for alkylation reaction of benzene with 1-octene

Catalysts	Benzene	ne 1-octene Products Selectivity (%) ^a													
Catalysis	con. (%) ^a	con. (%) ^a	CH ₄	C ₂	C ₃ ⁰	$C_3^{=}$	C_4^0	C ₄ =	C_{5}^{0}	$C_5^{=}$	C_6^0	$C_6^{=}$	C_{7}^{0}	$C_7^=$	C ₈
ZSM-5-S 47.5		99.9	0.1	0.4	12.0	0.2	10.0	0.8	5.3	1.1	2.6	0.9	1.1	0.9	3.1
Products Selectivity (%) ^a															
C ₉ ⁺ C	ycloalkane	Toluene	Ethylber	nzene	Xyl	ene	C ₉ aromat	tics	C ₁₀ aromatics		C ₁₁ ⁺ aromatics		TEX	-	tal natics
2.7	1.2	11.3	8.7	7	7.	6	7.4		5.0		12.2 35.1		52.2		

a, the conversion and products selectivity are estimated with the time on steam of 6.0 h;

 $C_i^{=}$ and C_i^{0} mean the alkene and alkane hydrocarbon with i carbon atom, respectively