Supporting Information

ZnO nanorod modified with noble metal-free Co_3O_4 nanoparticles as a photocatalyst for the efficient ethylenedegradation under light irradiation

Zihao Cui,^a Xiaolei Liu,^a Xizhuang Liang,^a Peng Wang,^{*,a} Qianqian Zhang,^a Zeyan Wang,^a Zhaoke Zheng,^a Yuanyuan Liu,^a Ying Dai,^b and Baibiao Huang ^a

^a State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China

^b School of Physics, Shandong University, Jinan 250100, China

*Corresponding authors e-mail addresses:

pengwangicm@sdu.edu.cn (P. Wang).

1. Pure RuO_2 and Co_3O_4 were also prepared in the same method, except that no ZnO was added to the solution before the chemical deposition reaction. The XRD patterns of the pure Co_3O_4 and RuO_2 samples with 300°C are shown in **Fig. S1**.

Fig. S1. The XRD patterns of the pure (a) Co₃O₄ and (b) RuO₂ samples with 300 °C.

2. The XRD patterns of the pure ZnO and ZnO/Co_3O_4 samples annealed at different temperatures.

- **Fig. S2.** The XRD patterns of the pure ZnO and Co₃O₄ nanoparticles decorated on ZnO samples annealed at different temperatures.
- 3. The EDS spectra of the ZnO/1% Co_3O_4 -300 °C sample.

Fig. S3. The EDS spectra of the ZnO/1% Co₃O₄-300 °C sample.

4. The (*Ahv*)²-*hv* plots of ZnO, ZnO/0.5% RuO₂-300 °C and ZnO/1% Co₃O₄-300 °C.

Fig. S4. The (*Ahv*)²-*hv* plots of ZnO, ZnO/0.5% RuO₂-300 °C and ZnO/1% Co₃O₄-300 °C.

5. UV-vis diffuse reflectance spectra of ZnO/Co_3O_4 and ZnO/RuO_2 .

Fig. S5. UV-vis diffuse reflectance spectra of ZnO/Co_3O_4 (a) and ZnO/RuO_2 (b) samples with different molar ratios. (c) UV-vis diffuse reflectance spectra of ZnO/Co_3O_4 annealed at different temperatures.

6. Photocatalytic degradation of ethylene by using ZnO/Co₃O₄ annealed at different temperatures.

Fig. S6. Photocatalytic degradation of ethylene by using ZnO/Co_3O_4 annealed at different temperatures.

7. The XRD patterns of ZnO/1% Co₃O₄-300 °C samples before and after photocatalytic degradation of ethylene.

Fig. S7. The XRD patterns of ZnO/1% Co₃O₄-300 °C samples before and after photocatalytic degradation of ethylene.

Table S1. The comparison of photocatalytic C_2H_4 degradation activities of different photocatalysts.

Photocatalyst	C ₂ H ₄	Amount	Light source	Performance	Referenc
	(ppm)	(g)			e
ZnO/1mol% Co ₃ O ₄	2500	0.15	300W Xe lamp full	After 135 min light	This
			spectrum irradiation	irradiation, C ₂ H ₄ can be	work
				degrade completely	
ZnO/0.3mol%	2500	0.15	300W Xe lamp full	After 210 min light	This
RuO ₂			spectrum irradiation	irradiation, C ₂ H ₄ can be	work
				degrade completely	
ZnO/1.5wt% Ag	2500	0.5	300W Xe lamp full	After 150 min light	[1]
			spectrum irradiation	irradiation, C ₂ H ₄ can be	
				degrade completely	
ZnO/CeO ₂ -	1250	0.5	300W Xe lamp full	After 90 min light	[2]
1.0%Ag			spectrum irradiation	irradiation, C_2H_4 can be	
				degrade completely	
ZnO/CeO ₂ -	1250	0.5	300W Xe lamp full	After 120 min light	[2]
1.5%Au			spectrum irradiation	irradiation, C_2H_4 can be	
				degrade completely	
0.75 wt%	1250	0.4	300 W Xe lamp (visible	After 210 min light	[3]
Pt@0.25 mol%			light, λ>420 nm)	irradiation, C_2H_4 can be	
Fe-WO ₃				degrade completely	
In ₂ O ₃ -Ag-Ag ₃ PO ₄	200	0.2	300 W Xe lamp (visible	After 2 h light irradiation,	[4]
			light, λ >420 nm)	C ₂ H ₄ can be degrade	
				completely	
Pt-TiO ₂	200	0.1	300 W Xe lamp (visible	After 12 min light	[5]
nanosheets			light, λ > 420 nm)	irradiation, C ₂ H ₄ can be	
				degrade completely	

BiVO ₄ (040) facets	100	0.5	Schölly	Fiberoptic	After 150 light	[6]
			Flexilux 650		irradiation, 60% C ₂ H ₄ is	
			Kaltlichtquelle 150 W		degraded	
BiVO ₄ /P25	1500	1	500 W Xe l	amp (visible	After 6 h light	[7]
			light, λ>400) nm)	irradiation, only 7.56%	
					C_2H_4 is	
					degraded	

References

[1] X. L. Zhu, X. Z. Liang, P. Wang, Y. Dai, B. B. Huang, *Appl. Surf. Sci.* 456 (2018)493-500.

[2] X. Liang, P. Wang, Y. Gao, H. Huang, F. Tong, Q. Zhang, Z. Wang, Y. Liu, Z. Zheng, Y. Dai and B. Huang, *Appl. Catal. B: Environ*, 2020, 260, 118151.

[3] X. L Liu. H.S. Zhai, P Wang, B.B Huang, Catal. Sci. Technol. 9 (2019) 652-658

[4] X. X. Chen, R. Li, X. Y. Pan, X. T. Huang, Z. G. Yi, *Chem. Eng. J.* 320 (2017)644-652.

[5] X. Y. Pan, X. X. Chen, Z. G. Yi, ACS Appl. Mater. Interfaces, 8 (2016)10104-10108.

[6] S.M. Thalluri, M. Hussain, G. Saracco, J. Barber, N. Russo, *Ind. Eng. Chem. Res.*53 (2014) 2640-2646.

[7] X. L. Song, Y. Y. Li, Z. D. Wei, S. Y. Ye, D. D. Dionysiou, *Chem. Eng. J.* 314
(2017) 443-452.