Supporting Information (SI)

Chemically reduced CuO-Co₃O₄ composite as highly efficient electrocatalyst for oxygen evolution reaction in alkaline media

Umair Aftab^a, Aneela Tahira^b, Raffaello Mazzaro^c, Muhammad Ishaq Abro^a, Muhammad Moazam Baloch^a, Magnus Willander^b, Omer Nur^b, Cong Yu^d, Zafar Hussain Ibupoto*^e

^aMehran University of Engineering and Technology, 7680 Jamshoro, Sindh Pakistan

^bDepartment of Science and Technology, Campus Norrkoping, Linkoping University, SE-60174 Norrkoping, Sweden

^c Institute for Microelectronics and Microsystems, Italian National Research Council, Section of Bologna, Via Piero Gobetti 101, 40129, Bologna, Italy.

^dState Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun People's Republic of China

^eDr. M.A Kazi Institute of Chemistry University of Sindh Jamshoro, 76080, Sindh Pakistan

*Corresponding author: Zafar Hussain Ibupoto, PhD

Email address: zaffar.ibhupoto@usindh.edu.pk

Figure S1: Elemental mapping images of pristine $CuO-Co_3O_4$ and chemically reduced $CuO-Co_3O_4$ composite

Figure S2: HRTEM images and SAED pattern of pristine CuO-Co₃O₄ (a, c) and chemically reduced CuO-Co₃O₄ (b, d)

Figure S3: SEM image of chemically reduced CuO-Co₃O₄ after chronoamperometric stability experiment

Figure S3: Cyclic voltammetry (CV) curves vs. RHE at the different scan rates for the calculation of double layer capacitance of Co_3O_4 , CuO, pristine CuO-Co₃O₄ and chemically reduced CuO-Co₃O₄ composite

Figure S4: The linear fitting of non-faradic current vs different scan rates

Table S1: Comparison of figure of merits chemically reduced CuO-Co ₃ O ₄ composite as OEF
catalyst with recently reported electrocatalysts.

Electrocatalyst	Electrolyte	Current Density	Overpotential	Tafel Slope	Ref.
Reduced CuO-Co ₃ O ₄	1M KOH	40 mA cm ²	144.5 mV	74 mV dec ⁻¹	This work
		100 mA cm ²	183.4 mV		
N-doped CoO nanowires	1M KOH	10 mA cm ²	319 mV	74 mV dec^{-1}	1
		100 mA cm ²	410 mV		
MnCo ₂ S ₄	1M KOH	10 mA cm ²	290 mV	71 mV dec ⁻¹	2
Ni/NiS/NC	1M KOH	10 mA cm ²	337 mV	52 mV dec^{-1}	3
CoFe _{0.7} Se _{1.7}	1M KOH	10 mA cm ²	279 mV	43.9 mV dec^{-1}	4
		50 mA cm^2	311 mV		
Co-doped CuO	1M KOH	50 mA cm ²	299 mV	134 mV dec^{-1}	5
		100 mA cm ²	330 mV		
CoFe ₂ O ₄	1M NaOH	10 mA cm ²	490 mV	54.2 mV dec^{-1}	6
Ni _{2.2} Fe(OH) _x	1M KOH	100 mA cm ²	234 mV	64.3 mV dec^{-1}	7
Ni-B/Ni foam	1M KOH	100 mA cm ²	360 mV	76 mV dec^{-1}	8

References:

- 1 K. Zhang, X. Xia, S. Deng, D. Xie, Y. Lu, Y. Wang, J. Wu, X. Wang, J. Tu, J. of Ene. Chemistry., 2019, 37, 13-17.
- 2 H.S. Jadhav, A. Roy, G.M. Thorat, W.J. Chung, J.G. Seo, *J. of Indus. & Eng. Chemistry.*, 2019, **71**, 452-459.
- 3 J. Ding, S. Jia, H. Wang, H. Gai, F. Liu, V. Linkov, R. Wang, *Intern. J. of Hydrogen Energy.*, 2019, 44, 2832–2840.
- 4 X. Wang, Y. Zhouab, M. Liu, C. Chen, J. Zhang, Electrochimica Acta., 2019, 297, 197-205.
- 5 X. Xiong, C. You, Z. Liu, A.M. Asiri, X. Sun, ACS Sust. Chem. & Engin., 2018, 6, 2883-2887.
- 6. J.S. Sagu, D. Mehta, K.G.U. Wijayantha, Electro. Commun., 2018, 87, 1-4.
- 7 T. Zhou, Z. Cao, P. Zhang, H. Ma, Z. Gao, H. Wang, Y. Lu, J. He, Y. Zhao, *Scientific Reports*, 2017, 7, 46154.
- 8 Y. Liang, X. Sun, A.M. Asiri, Y. He, Nanotechnology, 2016, 27, 12LT01.