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Experimental serction

Pd-NiCo2O4 without H2 treatment (denoted as NR-Pd/NiCo2O4): 200 mg NiCo2O4 was 
added into the bottle of U tube with flowing Ar gas at 200 °C for 30 min. The rest of 
the synthetic procedure was similar to that used for the synthesis of the GD-
Pd/NiCo2O4.

NiCo2O4 with H2 treatment (denoted as RE-NiCo2O4): 200 mg NiCo2O4 was added into 
the bottle of U tube with flowing 5% H2/Ar at 200 °C for 30min. When the temperature 
reduces under 100 °C, then switch to pure Ar gas. After cooling to room temperature, 
10 ml HNO3 solution (pH = 1) was quickly injected into U tube with continual flowing 
Ar and magnetic stirring at 250 rmp/min for 12 h. The rest of the synthetic procedure 
was similar to that used for the synthesis of the GD-Pd/NiCo2O4.

Kinetic data were collected under kinetics control regime (methane 
conversion < 10%). The reaction condition: 20 mg catalysts were physically 
mixed with 500 mg quartz sand (40–60 mesh) at a flow gas rate of 100 ml/min. 
The reaction rates of CCM were calculated using Eq (1):
𝑅(𝑚𝑚𝑜𝑙 ℎ ‒ 1𝑔 ‒ 1

𝑐𝑎𝑡) =  
𝑋𝑓𝐺𝐶

22.4𝑊𝑐𝑎𝑡
    (1)

Where  is the concentration of CH4 and G is the gas flow rate (ml/h).  is the 𝑋𝑓 𝐶
methane conversion and  is the weight of the spinel oxides catalysts (g). 𝑊𝑐𝑎𝑡
And the reaction rates equation:
𝑅 = 𝐴[𝐶𝐻4]𝑎[𝑂2]𝑏

When the methane conversion is very low (< 10%) at 250 °C, the A is constant. 
𝑙𝑔𝑅 = 𝑙𝑔𝐴 + 𝑎𝑙𝑔[𝐶𝐻4] + 𝑏𝑙𝑔[𝑂2]

When the concentration of O2 is fixed, the correlation between lgR and lg
 is close to linear. Then, the reaction orders of CH4 over the GD-Pd/NiCo2O4 [𝐶𝐻4]

and NiCo2O4 can be estimated by plotting lgR vs lg .[𝐶𝐻4]



Tables

Table S1 
XPS data measured for NiCo2O4 and Pd/NiCo2O4 catalysts.

Binding enery (eV) Surface element composition

Catalysts Pd 
3d5/2

Ni 
2p3/2

Co 
2p3/2

Pd4+/Pd2+ Ni2+/Ni3+ Co2+/Co3+

NiCo2O4 - 854.8 779.6 - 0.33 1.13

Pd(3nm)/NiCo2O4 337.0 854.7 779.6 0.50 0.49 2.94

WI-Pd/NiCo2O4 337.2 854.7 779.5 0.53 0.50 2.77

GD-Pd/NiCo2O4 337.5 854.4 778.0 3.75 1.38 5.98

Table S2
Quantitative analysis of surface element composition from XPS spectra.

Catalysts Pd Co Ni O
NiCo2O4 0 17.26 9.52 73.22

Pd(3nm)/NiCo2O4 1.94 15.03 6.67 76.36
WI-Pd/NiCo2O4 2.38 15.16 6.83 71.14
GD-Pd/NiCo2O4 3.42 17.00 4.63 75.27



Table S3
Overview of activity of catalysts we prepared and ones from the reference.

Catalysts Reaction conditions T50(ºC) Reference
s

GD-4.4% Pd/NiCo2O4 1% CH4; 99% Air, 24000 ml h-1 g-1 235 This work
GD-4.4% Pd/NiCo2O4 1% CH4; 99% Air, 300000 ml h-1 g-1 305 This work
GD-4.4% Pd/NiCo2O4 1% CH4; 10% H2O; 89% Air, 60000 ml h-1 

g-1

280 This work

0.5Pd/Al2O3 1% CH4; 22% O2, 17000 ml h-1 g-1 390 1

Pd@CeO2/H-Al2O3 0.5% CH4; 2% O2, 200000 ml h-1 g-1 280 2

1.97Au0.45Pd/meso-
Co3O4

2.5% CH4; 20% O2; 10% H2O, 20000 ml 
h-1 g-1

300 3

1%Pd-
0.2%Pt/Ce/Al2O3

1.5% CH4; 98.5% Air, 80000 h-1 340 4

0.4%Pd/0.5NiO/Al2O3 1% CH4; 99% Air, 30000 ml h-1 g-1 310 5

1.1%Pt/3DOM CYZ 2% CH4; 20% O2, 30000 ml h-1 g-1 434 6

2%Pd/Ba-Al2O3 500ppm CH4; 5% H2O; 8% O2, 30000 h-1 394 7

Au@PdOx/Co3O4 0.2% CH4; 10% H2O; 10% O2, 30000 ml 
h-1 g-1

360 8



Figures

Fig. S1 The TEM image of Pd colloid nanoparticles and the corresponding of particles size distribution.



Fig. S2 The TEM image of WI-Pd/NiCo2O4 and the corresponding of Pd nanoparticles size distribution.



Fig. S3 The TEM image of Pd(3nm)/NiCo2O4 and the corresponding of Pd nanoparticles size distribution.



Fig. S4 H2 –TPR profile of GD-Pd/NiCo2O4, Pd(3nm)/NiCo2O4, WI-Pd/NiCo2O4 and NiCo2O4.



Fig. S5 CH4-TPR results: the CH4 signals of all samples.



Fig. S6 Co 2p XPS profiles of NiCo2O4, GD-Pd/NiCo2O4, WI-Pd/NiCo2O4 and Pd(3nm)/NiCo2O4.



Fig. S7 Catalytic methane combustion performance of GD-Pd/NiCo2O4 at high GVSH. In this figure, the 

total oxidation of methane at temperature lower than 350 °C with only about 20mg catalytic material 

usage.



Fig. S8 Turnover frequency of NiCo2O4, GD-Pd/NiCo2O4, WI-Pd/NiCo2O4 and Pd(3nm)/NiCo2O4.



Fig. S9 GD-Pd/NiCo2O4 was revaluated the catalytic activity after water vapor for 25 h. Reaction 

condition: 1 vol.% CH4/Air, GHSV = 60000 ml g-1 h-1.



Fig. S10 (a) gas composition: 0.2% CH4, 4% O2 and 15% CO2 balanced with Ar at GHSV = 60000 ml h-1 g-1. 

(b) CO2-TPD. (c) gas composition: 0.2% CH4, 4% O2, 15% CO2 and 10% H2O balanced with Ar at GHSV = 

60000 ml h-1 g-1. (d) stability test of GD-Pd/NiCo2O4, WI-Pd/NiCo2O4 and Pd(3nm)/NiCo2O4 under the gas 

composition: 0.2% CH4, 4% O2 and 15% CO2 and 10% H2O balanced with Ar at GHSV = 60000 ml h-1 g-1.

we evaluated the catalytic performance of our catalyst under operating conditions, 
which contained ultra-low concentrations of methane (about 0.2%) and large amounts 
of carbon dioxide (about 15%) and water vapor (about 10%). In Fig. S10a, the effect of 
CO2 on the catalytic activity of the sample is limited. The GD-Pd/NiCo2O4 still has best 
catalytic performance with the T90 about 275 °C, which can be attributed to the fact 
that CO2 readily desorbed from the catalyst surface above 200 °C (Fig. S10b). When 
the 10% water vapor was introduced into the reaction system, all of the catalysts 
decreased the catalytic performance. As shown in Fig. S10c, under the actual working 
conditions, only the GD-Pd/NiCo2O4 catalyst can achieve totally conversion of 
methane below 400 °C. Furthermore, GD-Pd/NiCo2O4 also displays long-term stability 
without significant decrease in activity. However, the conversion of CH4 over WI-
Pd/NiCo2O4 declines from 20% to 8% after 20 hours. Under the same condition, the 
methane conversion over Pd(3nm)/NiCo2O4 decreases from 12 to 5%.



Fig. S11 Different concentration of Pd2+ ion added into the reaction system showing different catalytic 

activity. In this figure, the 250mg Pd(NO2)3 sample (4.4% GD-Pd/NiCo2O4) shows best catalytic 

performance at GHSV = 24000 ml h-1 g-1.



Fig. S12 The TEM and the HRTEM image of GD-Pd/Co3O4 sample.
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