Ultrafine PdO_x nanoparticles on spinel oxides by galvanic

displacement for catalytic combustion of methane

Zeshu Zhang,^{a,b,} Xuefeng Hu,^b Yibo Zhang,^{*a,b} Liwei Sun,^{a,b} Heyuan Tian,^{a,b} Jingwei Li^a and Xiangguang Yang^{*a,b}

- a. State Key Laboratory of Rare Earth Resource Utilization, Jilin Province Key Laboratory of Green Chemistry and Process, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
- b. University of Science and Technology of China, Hefei 230026, China.
- c. Corresponding author E-mail: yibozhang@ciac.ac.cn; xgyang@ciac.ac.cn; mailto:xgyang@ciac.ac.cn; xgyang@ciac.ac.cn; <a href="mailto:xgyang@ciac.a

Content

Experimental serction

Tables

Table S1 XPS data measured for $NiCo_2O_4$ and $Pd/NiCo_2O_4$ catalysts

 Table S2 Quantitative analysis of surface element composition from XPS spectra.

Table S3 Overview of activity of catalysts we prepared and ones from the reference.

Figures

Fig. S1 The TEM image of Pd colloid nanoparticles and the corresponding particles size distribution.

Fig. S2 The TEM image of WI-Pd/NiCo $_2O_4$ and the corresponding of Pd nanoparticles size distribution.

Fig. S3 The TEM image of $Pd(3nm)/NiCo_2O_4$ and the corresponding Pd nanoparticles size distribution.

Fig. S4 H₂-TPR profile of GD-Pd/NiCo₂O₄, Pd(3nm)/NiCo₂O₄, WI-Pd/NiCo₂O₄ and NiCo₂O₄.

Fig. S5 CH_4 -TPR results: the CH_4 signals of all samples.

Fig. S6 Catalytic methane combustion performance of GD-Pd/NiCo₂O₄ at high GVSH.

Fig. S7 Fine XPS spectra of Co 2p for GD-Pd/NiCo₂O₄, Pd(3nm)/NiCo₂O₄ and WI-Pd/NiCo₂O₄.

Fig. S8 Turnover frequency of NiCo₂O₄, GD-Pd/NiCo₂O₄, WI-Pd/NiCo₂O₄ and Pd(3nm)/NiCo₂O₄.

Fig. S9 GD-Pd/NiCo₂O₄ was revaluated the catalytic activity after water vapor for 25 h. Reaction condition: 1 vol.% CH₄/Air, GHSV = 60000 ml g⁻¹ h⁻¹.

Fig. S10

Fig. S11 Different concentration of Pd²⁺ ion added into the reaction system showing different catalytic activity.

Fig. S12 The TEM and the HRTEM image of GD-Pd/Co₃O₄ sample.

References

Experimental serction

Pd-NiCo₂O₄ without H₂ treatment (denoted as NR-Pd/NiCo₂O₄): 200 mg NiCo₂O₄ was added into the bottle of U tube with flowing Ar gas at 200 °C for 30 min. The rest of the synthetic procedure was similar to that used for the synthesis of the GD- $Pd/NiCo_2O_4$.

NiCo₂O₄ with H₂ treatment (denoted as RE-NiCo₂O₄): 200 mg NiCo₂O₄ was added into the bottle of U tube with flowing 5% H_2/Ar at 200 °C for 30min. When the temperature reduces under 100 °C, then switch to pure Ar gas. After cooling to room temperature, 10 ml HNO₃ solution (pH = 1) was quickly injected into U tube with continual flowing Ar and magnetic stirring at 250 rmp/min for 12 h. The rest of the synthetic procedure was similar to that used for the synthesis of the GD-Pd/NiCo₂O₄.

Kinetic data were collected under kinetics control regime (methane conversion < 10%). The reaction condition: 20 mg catalysts were physically mixed with 500 mg quartz sand (40–60 mesh) at a flow gas rate of 100 ml/min. The reaction rates of C& G were calculated using Eq (1): $R(mmol h^{-1}g_{cat}^{-1}) = \frac{1}{22.4W_{cat}}$ (1)

Where X_f is the concentration of CH₄ and G is the gas flow rate (ml/h). C is the methane conversion and W_{cat} is the weight of the spinel oxides catalysts (g). And the reaction rates equation: $R = A[CH_A]^a [O_2]^b$

When the methane conversion is very low (< 10%) at 250 °C, the A is constant. $lgR = lgA + alg[CH_4] + blg[O_2]$

When the concentration of O_2 is fixed, the correlation between lgR and lg $[CH_4]$ is close to linear. Then, the reaction orders of $[CH_4]$ over the GD-Pd/NiCo₂O₄ and NiCo₂O₄ can be estimated by plotting lgR vs lg $[CH_4]$.

Tables

Table S1

XPS data measured for NiCo₂O₄ and Pd/NiCo₂O₄ catalysts.

	Binding enery (eV)			Surface element composition		
Catalysts	Pd <i>3d</i> _{5/2}	Ni 2p _{3/2}	Co 2p _{3/2}	Pd ⁴⁺ /Pd ²⁺	Ni ²⁺ /Ni ³⁺	Co ²⁺ /Co ³⁺
NiCo ₂ O ₄	-	854.8	779.6	-	0.33	1.13
Pd(3nm)/NiCo ₂ O ₄	337.0	854.7	779.6	0.50	0.49	2.94
WI-Pd/NiCo ₂ O ₄	337.2	854.7	779.5	0.53	0.50	2.77
GD-Pd/NiCo ₂ O ₄	337.5	854.4	778.0	3.75	1.38	5.98

Table S2

Quantitative analysis of surface element composition from XPS spectra.

Catalysts	Pd	Со	Ni	0
NiCo ₂ O ₄	0	17.26	9.52	73.22
Pd(3nm)/NiCo ₂ O ₄	1.94	15.03	6.67	76.36
WI-Pd/NiCo ₂ O ₄	2.38	15.16	6.83	71.14
GD-Pd/NiCo ₂ O ₄	3.42	17.00	4.63	75.27

Overview of activity of catalysts we prepared and ones from the reference.

Catalysts	Reaction conditions	T ₅₀ (≌C)	Reference	
			S	
GD-4.4% Pd/NiCo ₂ O ₄	1% CH ₄ ; 99% Air, 24000 ml h ⁻¹ g ⁻¹	235	This work	
GD-4.4% Pd/NiCo ₂ O ₄	1% CH ₄ ; 99% Air, 300000 ml h ⁻¹ g ⁻¹	305	This work	
GD-4.4% Pd/NiCo ₂ O ₄	1% CH ₄ ; 10% H ₂ O; 89% Air, 60000 ml h ⁻¹	280	This work	
	g ⁻¹			
$0.5Pd/Al_2O_3$	1% CH ₄ ; 22% O ₂ , 17000 ml h ⁻¹ g ⁻¹	390	1	
$Pd@CeO_2/H-Al_2O_3$	0.5% CH ₄ ; 2% O ₂ , 200000 ml h ⁻¹ g ⁻¹	280	2	
1.97Au _{0.45} Pd/meso-	2.5% CH ₄ ; 20% O ₂ ; 10% H ₂ O, 20000 ml	300	3	
Co ₃ O ₄	h ⁻¹ g ⁻¹			
1%Pd-	1.5% CH ₄ ; 98.5% Air, 80000 h ⁻¹	340	4	
0.2%Pt/Ce/Al ₂ O ₃				
0.4%Pd/0.5NiO/Al ₂ O ₃	1% CH ₄ ; 99% Air, 30000 ml h ⁻¹ g ⁻¹	310	5	
1.1%Pt/3DOM CYZ	2% CH ₄ ; 20% O ₂ , 30000 ml h ⁻¹ g ⁻¹	434	6	
2%Pd/Ba-Al ₂ O ₃	500ppm CH ₄ ; 5% H ₂ O; 8% O ₂ , 30000 h ⁻¹ 394		7	
Au@PdO _x /Co ₃ O ₄	0.2% CH ₄ ; 10% H ₂ O; 10% O ₂ , 30000 ml	360	8	
	h ⁻¹ g ⁻¹			

Figures

Fig. S1 The TEM image of Pd colloid nanoparticles and the corresponding of particles size distribution.

Fig. S2 The TEM image of WI-Pd/NiCo $_2O_4$ and the corresponding of Pd nanoparticles size distribution.

Fig. S3 The TEM image of $Pd(3nm)/NiCo_2O_4$ and the corresponding of Pd nanoparticles size distribution.

 $\label{eq:Fig.S4} \textbf{Fig. S4} \ \textbf{H}_2 - \textbf{TPR} \ profile \ of \ \textbf{GD-Pd/NiCo}_2O_4, \ \textbf{Pd}(3nm)/\textbf{NiCo}_2O_4, \ \textbf{WI-Pd/NiCo}_2O_4 \ and \ \textbf{NiCo}_2O_4.$

Fig. S5 CH_4 -TPR results: the CH_4 signals of all samples.

Fig. S6 Co 2p XPS profiles of NiCo₂O₄, GD-Pd/NiCo₂O₄, WI-Pd/NiCo₂O₄ and Pd(3nm)/NiCo₂O₄.

Fig. S7 Catalytic methane combustion performance of GD-Pd/NiCo₂O₄ at high GVSH. In this figure, the total oxidation of methane at temperature lower than 350 °C with only about 20mg catalytic material usage.

Fig. S8 Turnover frequency of NiCo₂O₄, GD-Pd/NiCo₂O₄, WI-Pd/NiCo₂O₄ and Pd(3nm)/NiCo₂O₄.

Fig. S9 GD-Pd/NiCo₂O₄ was revaluated the catalytic activity after water vapor for 25 h. Reaction condition: 1 vol.% CH₄/Air, GHSV = 60000 ml g⁻¹ h⁻¹.

Fig. S10 (a) gas composition: 0.2% CH₄, 4% O₂ and 15% CO₂ balanced with Ar at GHSV = 60000 ml h⁻¹ g⁻¹. (b) CO2-TPD. (c) gas composition: 0.2% CH₄, 4% O₂, 15% CO₂ and 10% H₂O balanced with Ar at GHSV = 60000 ml h⁻¹ g⁻¹. (d) stability test of GD-Pd/NiCo₂O₄, WI-Pd/NiCo₂O₄ and Pd(3nm)/NiCo₂O₄ under the gas composition: 0.2% CH₄, 4% O₂ and 15% CO₂ and 10% H₂O balanced with Ar at GHSV = 60000 ml h⁻¹ g⁻¹.

we evaluated the catalytic performance of our catalyst under operating conditions, which contained ultra-low concentrations of methane (about 0.2%) and large amounts of carbon dioxide (about 15%) and water vapor (about 10%). In **Fig. S10a**, the effect of CO_2 on the catalytic activity of the sample is limited. The GD-Pd/NiCo₂O₄ still has best catalytic performance with the T₉₀ about 275 °C, which can be attributed to the fact that CO_2 readily desorbed from the catalyst surface above 200 °C (**Fig. S10b**). When the 10% water vapor was introduced into the reaction system, all of the catalysts decreased the catalytic performance. As shown in **Fig. S10c**, under the actual working conditions, only the GD-Pd/NiCo₂O₄ catalyst can achieve totally conversion of methane below 400 °C. Furthermore, GD-Pd/NiCo₂O₄ also displays long-term stability without significant decrease in activity. However, the conversion of CH₄ over WI-Pd/NiCo₂O₄ declines from 20% to 8% after 20 hours. Under the same condition, the methane conversion over Pd(3nm)/NiCo₂O₄ decreases from 12 to 5%.

Fig. S11 Different concentration of Pd^{2+} ion added into the reaction system showing different catalytic activity. In this figure, the 250mg $Pd(NO_2)_3$ sample (4.4% GD-Pd/NiCo₂O₄) shows best catalytic performance at GHSV = 24000 ml h⁻¹ g⁻¹.

Fig. S12 The TEM and the HRTEM image of GD-Pd/Co $_3O_4$ sample.

References

- 1 F. Yu, X. L. Xu, H. G. Peng, H. J. Yu, Y. F. Dai, W. M. Liu, J. W. Ying, Q. Sun and X. Wang, *Appl. Catal.*, *A*, 2015, **507**, 109-118.
- 2 M. Cargnello, J. J. D. Jaen, J. C. H. Garrido, K. Bakhmutsky, T. Montini, J. J. C. Gamez, R. J. Gorte and P. Fornasiero, *Science*, 2012, **337**, 713-717.
- 3 Z. Wu, J. Deng, Y. Liu, S. Xie, Y. Jiang, X. Zhao, J. Yang, H. Arandiyan, G. Guo and H. Dai, *J. Catal.*, 2015, **332**, 13-24.
- 4 X. Fan, F. Wang, T. L. Zhu and H. He, J. Environ. Sci., 2012, 24, 507-511.
- 5 X. L. Zou, Z. B. Rui, S. Q. Song and H. B. Ji, J. Catal., 2016, **338**, 192-201.
- 6 H. Arandiyan, H. X. Dai, K. M. Ji, H. Y. Sun, Y. Y. Zhao and J. H. Li, *Small*, 2015, **11**, 2366-2371.
- 7 I. Friberg, N. Sadokhina and L. Olsson, *Appl. Catal.*, *B*, 2018, **231**, 242-250.
- 8 N. T. Yang, J. W. Liu, Y. H. Sun and Y. Zhu, *Nanoscale*, 2017, **9**, 2123-2128.