Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2020

Supporting Information

Antimony doped tin oxide as an efficient electro-catalyst toward VO²⁺/VO₂⁺ redox

couple for vanadium redox flow battery

Yang Lv⁺, Chunmei Yang⁺, Haining Wang, Jin Zhang, Yan Xiang* and Shanfu Lu*
Beijing Key Laboratory of Bio-inspired Energy Materials and Devices, School of Space and
Environment, Beihang University, Beijing 100191, P. R. China.
Corresponding authors. Tel. /fax: +86 10 61716639.
E-mail address: lusf@buaa.edu.cn (S. Lu), xiangy@buaa.edu.cn (Y. Xiang)
⁺ The authors contributed equally to this work.

Fig. S1. Scanning electron microscope images of (a) SnO₂, (b) ATO-5, (c) ATO-9 and (d) ATO-15.

Fig. S2. (a) The cyclic voltammetry curves of SnO_2 , ATO-5, ATO-9 and ATO-15 on glassy carbon electrode as working electrode in 1.0 mol L⁻¹ H₂SO₄ solution at a scan rate of 10 mV s⁻¹. (b) Variation peak currents as a function of the square root of the scan rates on ATO-9.

Fig. S3. (a)The cyclic voltammetry curves of ATO-9 on glassy carbon electrode as working electrode in 1.0 mol L^{-1} H₂SO₄ solution at a scan rate of 50 mV s⁻¹. (b) The cyclic voltammetry curves of ATO-9 nanoparticles on glassy carbon electrode as working electrode in 1.0 mol L^{-1} V²⁺ + 3 mol L^{-1} H₂SO₄ solution at a scan rate of 50 mV s⁻¹.

Fig. S4. The cyclic voltammetry curves of SnO_2 , Sb_2O_4 and ATO-9 nanoparticles on glassy carbon electrode and bare GCE as working electrode in 1.0 mol L⁻¹ VOSO₄ + 3.0 mol L⁻¹ H₂SO₄ solution at a scan rate of 10 mV s⁻¹. (The Sb_2O_4 nanoparticles, which include two oxidation valence states of Sb (III) and Sb (V), were prepared according to the reported reference.¹)

Fig. S5. LSV curves of SnO₂, ATO-5, ATO-9 and ATO-15 nanoparticles on glassy carbon electrode as working electrode in 1.0 mol L^{-1} VOSO₄ + 3.0 mol L^{-1} H₂SO₄ solution at a scan rate of 10 mV s⁻¹.

Fig. S6. (a) XPS spectra of SnO₂, ATO-5, ATO-9 and ATO-15. (b) Sn3d XPS spectra of SnO₂, ATO-5, ATO-9 and ATO-15. (c) O1s XPS spectra of ATO-9. The blue, green line represents the fitted peaks of O1s and $Sb3d_{5/2}$ spectra. Black circles exhibit the original peak and blue line is the total fitted line.

Fig. S7. SEM image (a) and EDS element mapping of ATO-9 coated on graphite felt: element Sn (b), element Sb (c) and element O (d).

Fig. S8. The photograph of a vanadium redox flow battery.

Fig. S9. Charge-discharge curves of VRFB employing with optimized ATO-9@GF at different current densities.

Fig. S10. SEM images of ATO-9 coated on graphite felt after cell cyclic measurement.

Fig. S11. (a) The discharge capacity of VRFB with ATO-9@GF at different cycles. (b) Capacity retention ratio of VRFB with ATO-9@GF at 200 mA cm^{-2} .

	Table S1.	. Sb doping le	evel and resistiv	vity of SnO ₂ , A	4TO-5, ATO-9	and ATO-15.
--	-----------	----------------	-------------------	------------------------------	--------------	-------------

Catalyst	Sb doping level (%) ^a	Resistivity (Ω cm)
SnO ₂	0	16512.32
ATO-5	6.70	14.59
ATO-9	9.77	7.66
ATO-15	13.71	36.76

^{*a*} Determined by ICP-MS.

Table S2. Comparison of various metallic oxides electrodes for vanadium redox flow battery application.

Catalyst	ΔE _p (mV)	Scan rate (mV s ⁻¹)	Current density (mA cm ⁻²)	CE (%)	VE (%)	EE (%)	Ref
Mn ₃ O ₄	~560	20	40	85.40	90.20	77.00	2
WO ₃	106	10	60	95.10	81.80	78.10	3
TiO ₂	~125	5	200	90.00	73.00	65.40	4
ZrO ₂	224	1	200	93.70	71.90	67.40	5
SnO₂/CF	766	10	150	97.40	79.30	77.30	6
			140	97.92	87.80	85.97	Thic
ATO-9	133	10	220	97.98	81.32	79.68	1115
			300	98.06	74.53	73.09	work

References

- 1. D. Orosel, P. Balog, H. Liu, J. Qian and M. Jansen, *J. Solid State Chem.*, 2005, 178, 2602-2607.
- 2. K. J. Kim, M. S. Park, J. H. Kim, U. Hwang, N. J. Lee, G. Jeong and Y. J. Kim, *Chem. Commun.*, 2012, **48**, 5455-5457.
- 3. C. Yao, H. Zhang, T. Liu, X. Li and Z. Liu, J. Power Sources, 2012, **218**, 455-461.
- 4. T.-M. Tseng, R.-H. Huang, C.-Y. Huang, C.-C. Liu, K.-L. Hsueh and F.-S. Shieu, *J. Electrochem. Soc.*, 2014, **161**, A1132-A1138.
- 5. H. Zhou, Y. Shen, J. Xi, X. Qiu and L. Chen, *ACS Appl. Mater. Interfaces*, 2016, **8**, 15369-15378.
- 6. S. Mehboob, G. Ali, H.-J. Shin, J. Hwang, S. Abbas, K. Y. Chung and H. Y. Ha, *Appl. Energy*, 2018, **229**, 910-921.