A Bpp-based Dinuclear Ruthenium Photocatalyst for Visible Light-Driven Oxidation Reactions

Seán Hennessey^a, Pau Farràs^{a,b*}, Jordi Benet-Buchholz^c, Antoni Llobet^{b,c*}

Supporting Information

Figure S1: Cyclic voltammograms of out-[3-Cl] ²⁺ showing degradation under ambient light over time periods of	
2 hours in CH ₂ Cl ₂ , scan rate 0.1 V/s. <i>out</i> -[1] ²⁺ shown for comparison	2
Figure S2: Stacked ¹ H-NMR spectra of impure <i>out</i> -[3-Cl] ²⁺ before light irradiation (above) and after light	
irradiation (below) performed in MeOD. Apodization for bottom spectra: Exponential: 1.60 Hz, Integral-	
to-noise effect : 5.129 s	2
Figure S3: Stacked ¹ H-NMR spectra of <i>in</i> -[3-Cl] ²⁺ in (CD ₃) ₂ CO (above) and impure <i>out</i> -[3-Cl] ²⁺ before light	
irradiation performed in MeOD (below)	3
Figure S4: ¹⁹ F NMR comparisons between; a) <i>in</i> -[3-OH ₂] ³⁺ in D ₂ O b) <i>in</i> -[3-OCOCF ₃] ²⁺ in acetone-d ₆ . The ¹⁹ F NMR	
of free trifluoroacetate in D ₂ O (c) and free potassium hexafluorophosphate in D ₂ O (d) are shown for	
comparison	3
Figure S5: UV-vis redox titration of $in-[3-OH_2]^{3+}$ at pH = 1, upon addition of 0.1 eq. (up to 4 eq.) of Ce(IV) over	
time	4
Figure S6: UV-Vis absorbance spectra over time for an aqueous solution of <i>in</i> -[3-OH] ⁺ at pH = 12 under air. The	
arrow indicates the decrease in absorption at the MLCT as a result of precipitation of the complex.	5
Figure S7: Vis-NIR spectra of $in-[3-OH_2]^{3+}$ in CF ₃ SO ₃ H (pH = 1). Values between 1000-2000 nm multiplied by 10	
for visibility. Inset: Vis-NIR spectra of <i>in</i> -[3-OH ₂] ³⁺ in CF ₃ SO ₃ H (pH = 1) at a concentration of 2.0 mM. v_{max}	
(cm ⁻¹) = 8422.	5
Figure S8: Cyclic voltammograms of <i>in</i> -[3-Cl] ²⁺ and <i>in</i> -[3-CH ₃ CN] ³⁺ in a deoxygenated solution of CH ₂ Cl ₂ with	
supporting electrolyte TBAF (0.1 M) scan rate of 0.01 Vs ⁻¹	6
Figure S9: ¹ H-NMR spectrum of <i>in</i> -[3-Cl] ²⁺ performed in (CD ₃) ₂ CO.	7
Figure S10: ¹³ C-NMR spectrum of <i>in</i> -[3-Cl] ²⁺ performed in (CD ₃) ₂ CO.	7
Figure S11: ¹ H-NMR spectrum of <i>in</i> -[3-CH ₃ CN] ²⁺ performed in CD ₃ CN.	8
Figure S12: DEPT spectrum of <i>in</i> -[3-CH ₃ CN] ²⁺ performed in CD ₃ CN.	8
Figure S13: ¹ H-NMR spectrum of <i>in</i> -[3-OOCCF ₃] ²⁺ performed in (CD ₃) ₂ CO.	9
Figure S14: ¹³ C-NMR spectrum of <i>in</i> -[3-OOCCF ₃] ²⁺ performed in (CD ₃) ₂ CO.	9
Figure S15: COSY spectrum of <i>in</i> -[3-OOCCF ₃] ²⁺ performed in (CD ₃) ₂ CO1	0
Figure S16: HSQC spectrum of in -[3-OOCCF ₃] ²⁺ performed in (CD ₃) ₂ CO1	0
Figure S17: HMBC spectrum of in -[3-OOCCF ₃] ²⁺ performed in (CD ₃) ₂ CO1	1
Figure S18: ¹ H-NMR of <i>in</i> -[3-OH ₂] ³⁺ in D ₂ O1	1
Figure S19: Full HPLC chromatogram of dyad mixture after reaction (iv). Fractions assigned by mass spec.	
Fraction 1 - Ru(tpy) ₂ derivative, Fraction 2 – 2^{2+} , Fraction 3 – <i>in</i> -[3-OCOCF ₃] ³⁺ 1	2
Figure S20: ESI-MS of pure fraction from HPLC dissolved in OH2 to give, <i>in</i> -[3-OH ₂] ³⁺ , performed in MeOH with	
the addition of OH2. m/z (M ³⁺) = 493.212	2
Figure S21: ESI-MS of <i>in</i> -[3-CH ₃ CN] ²⁺ performed in MeOH with the addition of H ₂ O1	3
Figure S22: DFT optimized structures of (a) in-3-Cl (b) out-3-Cl (c) in-3-CH ₃ CN (d) out-3-CH ₃ CN. Hydrogen atoms	5
are omitted for clarity Error! Bookmark not defined	۱.

Table S1. Crystallographic data for complexes in-[3-L](PF₆)_{2/3} where; L = CH₃CN or Cl.4Table S2: NMR spectroscopy data6

a. School of Chemistry, Energy Research Centre, Ryan Institute, National University of Ireland, Galway (NUI Galway), University Road, H91 CF50 Galway, Ireland.

b. Institute of Chemical Research of Catalonia (ICIQ), Av. Països Catalans 16, 43007 Tarragona, Spain.

c. Departament de Química, Universidad Autònoma de Barcelona, Cerdanyola del Vallès, 08193 Barcelona, Spain.

*Correspondence: pau.farras@nuigalway.ie; Tel.: +353 91 492765 (P.F.); allobet@iciq.es; Tel.: +34 977 920 000 (A.L.).

Figure S1: Cyclic voltammograms of *out***-[3-Cl]²⁺** showing degradation under ambient light over time periods of 2 hours in CH_2Cl_2 , scan rate 0.1 V/s. *out*-[1]²⁺ shown for comparison.

Figure S2: Stacked ¹H-NMR spectra of impure **out-[3-Cl]**²⁺ before light irradiation (above) and after light irradiation (below) performed in MeOD. Apodization for bottom spectra: Exponential: 1.60 Hz, Integral-to-noise effect : 5.129 s.

Figure S3: Stacked ¹H-NMR spectra of *in*-[**3-Cl**]²⁺ in $(CD_3)_2CO$ (above) and impure *out*-[**3-Cl**]²⁺ before light irradiation performed in MeOD (below).

-69.5 70.0 70.5 71.0 71.5 72.0 72.5 73.0 73.5 74.0 74.5 75.0 75.5 76.0 76.5 77.0 77.5 78.0 78.5 79.0 79.5 80.0 80.5 81.0 81.5 82.0 82.5

Figure S4: ¹⁹F NMR comparisons between; a) *in*-[**3**-OH₂]³⁺ in D₂O b) *in*-[**3**-OCOCF₃]²⁺ in acetone-d₆. The ¹⁹F NMR of free trifluoroacetate in D₂O (c) and free potassium hexafluorophosphate in D₂O (d) are shown for comparison

	<i>in</i> -[(bpy)₂Ru(bpp)Ru(CH₃CN)(tpy)](PF ₆)₃	in-[(bpy)2Ru(bpp)Ru(Cl)(tpy)](PF ₆)2
Empirical formula	$C_{50}H_{39}F_{18}N_{12}P_3Ru_2\\$	$C_{51}H_{42}CIF_{12}N_{11}OP_2Ru_2\\$
M _r (g mol ⁻¹)	1444.98	1352.48
Crystal system	Triclinic	Triclinic
Space group	P-1	P-1
<i>a</i> [Å]	10.6161(10)	12.9180(4)
<i>b</i> [Å]	15.1085(13)	13.8310(4)
<i>c</i> [Å]	16.9110(14)	17.5520(6)
α [°]	90.103(3)	92.9970(19)
в [°]	94.853(2)	100.953(2)
γ [°]	105.573(2)	105.6680(18)
Volume [ų]	2602.6(4)	2946.61(16)
Z	2	2
$ ho_{ m calcd}$ [Mg/m ³]	1.844	1.524
Absorption coefficient [mm ⁻¹]	0.789	0.696
Final R indices [I>2o(I)]	$R_1 = 0.0412$, $wR_2 = 0.0925$	$R_1 = 0.0771$, $wR_2 = 0.2103$
R indices (all data)	R ₁ = 0.0604 , wR ₂ = 0.1014	R ₁ = 0.1404, <i>w</i> R ₂ = 0.2549

Table S1. Crystallographic data for complexes $in-[3-L](PF_6)_{2/3}$ where; L = CH₃CN or Cl.

Figure S5: UV-vis redox titration of $in-[3-OH_2]^{3+}$ at pH = 1, upon addition of 0.1 eq. (up to 4 eq.) of Ce(IV) over time.

Figure S6: UV-Vis absorbance spectra over time for an aqueous solution of *in*-[**3-OH**]**3**⁺ at pH = 12 under air. The arrow indicates the decrease in absorption at the MLCT as a result of precipitation of the complex.

Figure S7: Vis-NIR spectra of *in*-[**3**-OH₂]³⁺ in CF₃SO₃H (pH = 1). Values between 1000-2000 nm multiplied by 10 for visibility. Inset: Vis-NIR spectra of *in*-[**3**-OH₂]³⁺ in CF₃SO₃H (pH = 1) at a concentration of 2.0 mM. v_{max} (cm⁻¹) = 8422.

Figure S8: Cyclic voltammograms of *in*-[3-Cl]²⁺ and *in*-[3-CH₃CN]³⁺ in a deoxygenated solution of CH_2Cl_2 with supporting electrolyte TBAF (0.1 M) scan rate of 0.01 Vs⁻¹.

Table S2: NMR spectroscopy data

Complex	1D NMR data
In-[3-Cl] ²⁺	¹ H NMR (400 MHz, (CD ₃) ₂ CO)) δ 9.25 (d, <i>J</i> = 5.6 Hz, 1H), 8.91 (d, <i>J</i> = 8.1 Hz, 1H), 8.74 (dd, <i>J</i> = 13.1, 8.1 Hz, 2H), 8.56 – 8.40 (m, 6H), 8.27 (s, 1H), 8.20 (t, <i>J</i> = 7.5 Hz, 1H), 8.13 (dt, <i>J</i> = 15.0, 7.8 Hz, 2H), 8.07 – 7.95 (m, 5H), 7.93 – 7.86 (m, 2H), 7.82 (d, <i>J</i> = 5.9 Hz, 1H), 7.64 – 7.39 (m, 9H), 7.27 (t, <i>J</i> = 6.8 Hz, 1H), 7.10 (dd, <i>J</i> = 11.0, 5.9 Hz, 2H), 6.75 (t, <i>J</i> = 6.7 Hz, 2H).
	¹³ C-NMR (101 MHz, (CD ₃) ₂ CO) δ: 160.30, 159.39, 158.86, 158.71, 158.57, 157.75, 156.92, 156.86, 156.32, 156.07, 155.87, 155.03, 154.85, 154.49, 152.94, 152.01, 151.96, 150.87, 150.78, 150.73, 150.39, 137.57, 137.22, 136.63, 136.48, 135.62, 135.37, 135.32, 132.31, 127.43, 127.42, 126.64, 126.56, 125.60, 124.65, 124.14, 123.28, 123.24, 123.11, 122.98, 122.52, 122.36, 122.15, 121.71, 120.91, 119.69, 104.44
<i>In</i> -[3-CH₃CN] ³⁺	¹ H-NMR (400 MHz, CD ₃ CN) δ : 8.76 (dt, <i>J</i> = 5.5, 1.3 Hz, 1H), 8.64 – 8.49 (m, 3H), 8.41 (ddd, <i>J</i> = 18.7, 8.1, 0.9 Hz, 2H), 8.33 – 8.25 (m, 3H), 8.19 (q, <i>J</i> = 7.9 Hz, 2H), 8.13 – 7.98 (m, 5H), 7.97 (s, 1H), 7.84 – 7.73 (m, 2H), 7.61 (td, 2H), 7.56 – 7.34 (m, 6H), 7.29 (ddd, <i>J</i> = 7.4, 5.7, 1.3 Hz, 1H), 7.24 – 7.17 (m, 3H), 7.12 (ddd, <i>J</i> = 7.3, 5.6, 1.3 Hz, 1H), 6.95 (ddt, <i>J</i> = 5.8, 1.5, 0.8 Hz, 1H), 6.90 (ddt, 1H), 6.75 (ddt, 1H). (35 protons?)
	 ¹³C-NMR (101 MHz, CD₃CN) δ: 158.82, 158.46, 158.18, 157.84, 157.65, 157.38, 157.30, 155.83, 155.56, 154.85, 154.17, 153.84, 152.61, 152.15, 151.84, 151.13, 150.94, 149.85, 138.53, 137.94, 137.86, 137.66, 137.46, 136.92, 136.43, 136.27, 128.50, 127.56, 127.22, 127.19, 126.17, 125.37, 124.77, 124.53, 124.33, 124.03, 123.96, 123.59, 123.36, 123.29, 122.99, 121.35, 120.09, 104.50.
<i>In-</i> [3-OH ₂] ³⁺	¹ H NMR (400 MHz, D_2O) δ 8.42 (dd, J = 7.0, 5.1 Hz, 2H), 8.38 – 8.12 (m, 8H), 8.06 – 7.82 (m, 11H), 7.76 (m, 1H), 7.69 (d, J = 8.1 Hz, 1H), 7.51 (m, 2H), 7.42 – 7.29 (m, 6H), 7.15 (ddd, J = 7.3, 5.7, 1.3 Hz, 2H), 7.01 (s, 1H), 6.84 (s, 1H), 6.71 (s, 1H), 6.65 (ddd, J = 7.3, 5.7, 1.3 Hz, 1H), 6.50 (t, J = 6.6 Hz, 1H).

Figure S9: ¹H-NMR spectrum of *in-*[**3-Cl**]²⁺ performed in (CD₃)₂CO.

Figure S10: ¹³-CMR spectrum of *in-*[**3-Cl**]²⁺ performed in (CD₃)₂CO.

Figure S11: ¹H-NMR spectrum of *in-*[**3-CH**₃**CN**]³⁺ performed in CD₃CN.

Figure S12: DEPT spectrum of *in-*[3-CH₃CN]³⁺ performed in CD₃CN.

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 ppm

30 20

10

ò

Figure S14: ¹³C-NMR spectrum of *in-*[**3-OOCCF**₃]²⁺ performed in (CD₃)₂CO.

Figure S15: COSY spectrum of $in-[3-OOCCF_3]^{2+}$ performed in $(CD_3)_2 CO$.

Figure S16: HSQC spectrum of *in-*[**3-OOCCF**₃]²⁺ performed in (CD₃)₂CO.

Figure S17: HMBC spectrum of $in-[3-OOCCF_3]^{2+}$ performed in $(CD_3)_2 CO$.

Figure S18: ¹H-NMR of $in-[3-OH_2]^{3+}$ in D₂O.

Figure S19: Full HPLC chromatogram of dyad mixture after reaction (iv). Fractions assigned by mass spec. Fraction 1 - $Ru(tpy)_2$ derivative, Fraction 2 – 2^{2+} , Fraction 3 – *in*-[3-OCOCF₃]²⁺.

Figure S20: ESI-MS of pure fraction from HPLC dissolved in H₂O to give, *in*-[**3-OH**₂]³⁺, performed in MeOH with the addition of H₂O. m/z (M^{3+}) = 493.2.

Figure S21: ESI-MS of in-[3-CH₃CN]³⁺ performed in MeOH with the addition of H₂O.

Figure S22: DFT optimized structures of (a) *in*-[3-Cl]²⁺ (b) *out*-[3-Cl]²⁺ (c) *in*-[3-CH₃CN]³⁺ (d) *out*-[3-CH₃CN]³⁺. Hydrogen atoms are omitted for clarity.