Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2019

Supplementary Information

Dual catalyst system for selective vinyl chloride production *via* ethene oxychlorination

Matthias Scharfe,^{*a*} Vladimir Paunović,^{*a*} Sharon Mitchell,^{*a*} Roland Hauert,^{*b*} Shibo Xi,^{*c*} Armando Borgna,^{*c*} Javier Pérez-Ramírez ^{*a*,*}

^{*a*} Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog Weg 1, 8093 Zurich, Switzerland.

^b EMPA, Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, 8600 Dübendorf, Switzerland.

^c Institute of Chemical and Engineering Sciences, Agency for Science, Technology and Research in Singapore, 1 Pesek Road, Jurong Island, 627833 Singapore.

* Corresponding author. E-mail: jpr@chem.ethz.ch.

Scheme S1. Laboratory set-up used for catalytic studies. 1: on-off valves, 2: mass-flow controllers, 3: static mixer, 4: syringe pump, 5: vaporizer, 6: quartz reactor (10 mm inner diameter), 7: catalyst bed, 8: oven, 9: effluent stream heating, 10: three-way sampling valve, 11: NaOH scrubbers, PI: pressure indicator, and TI: temperature indicator.

Fig. S1. Rate of ethene consumption over catalysts at 673 K as a function of the CeO₂ particle surface as estimated based on the average particle diameter determined by XRD (and microscopy in the case of CeO₂/ZrO₂) and the assumption of hemispherical shaped particles. Conditions are detailed in **Table 2**.

Fig. S2. Rate of ethene consumption over catalysts at 673 K as a function of a) the maximum temperature, b) the onset temperature, and c) peak area determined by H₂-TPR of used catalysts. Conditions are detailed in **Table 2**.

Fig. S3. a) Cl_2 yield in HCl oxidation, b) CO_x yield in VCM oxidation, and c,d) VCM yield in EDC dehydrochlorination as a function of temperature. Conditions are detailed in **Table 2** in the main manuscript.

Fig. S4. Selectivity to VCM (top) and coke (bottom) in ethene oxychlorination at 673 K as a function of the peak area in NH₃-TPD of used catalysts. Conditions are detailed in **Table 2**.