Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2020

Facile template synthesis of dumbbell-like Mn_2O_3 with oxygen vacancies for efficient degradation of organic pollutants by activating peroxymonosulfate

Yang Li^a, Didi Li^a, Shisuo Fan^b, Ting Yang^c, Qi Zhou ^{d,*}

^a Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China

^b School of Resources and Environment, Anhui Agricultural University, Hefei 230036, China

College of Life and Environmental Sciences, Minzu University of China, Beijing
100081, China

^d College of chemistry and chemical engineering, Anhui University, Hefei 230601, China

^{*} Corresponding author: TEL/FAX: +86-0551-63861279; E-mail: roundzking@163.com

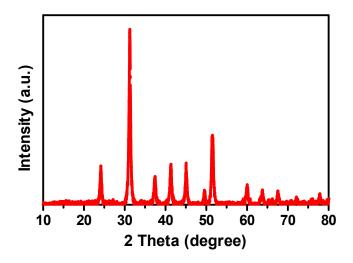


Fig. S1. XRD pattern of the precursors of Mn_2O_3 -G.

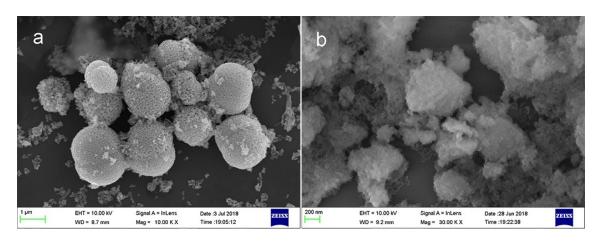


Fig. S2. FESEM images of (a) Mn_2O_3 -C and (b) Mn_2O_3 -N.

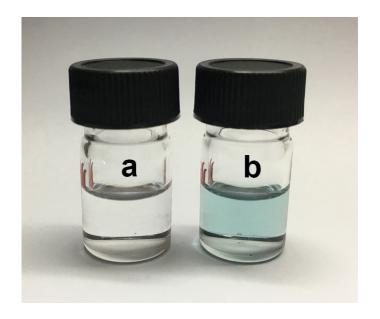


Fig. S3. The optical image of the solution in the (a) NBT and (b) Mn_2O_3 -G/PMS/NBT system.

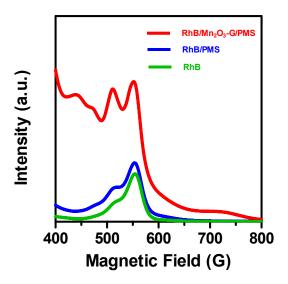


Fig. S4. UV-vis absorption spectra of H_2O_2 concentration in different systems.