Mono- and Diylide-substituted Phosphines (YPhos): Impact of the Ligand Properties on the Catalytic Activity in Gold(I)catalyzed Hydroaminations

Christopher Schwarz, Jens Handelmann, Daniel M. Baier, Alina Ouissa, Viktoria H. Gessner* Ruhr University Bochum, Faculty of Chemistry and Biochemistry, Chair of Inorganic Chemistry II, Universitätsstrasse 150, 44780 Bochum, Germany

Index

1.	Expe	erimental Details	3
	1.1	General methods	3
	1.2	Preparation of the Y _{CN} Phos ligands	3
	1.2.1 1.2.2 1.2.3 1.2.4 1.2.5 1.2.6 1.3	Preparation of $Y_{CN}P^{I}Bu_2$ Preparation of $(Y_{CN})_2PPh$ Preparation of $(Y_{CN})_2PCy$ Preparation of $(Y_{CN})_2P^{I}Bu$ Preparation of $(Y_{CN})_2PCI$ Preparation of $(Y_{CN})_3P$ Preparation of the metal complexes	3 4 5 5 5
	1.3.1 1.3.2 1.3.3 1.3.4 1.3.5 1.4	Preparation of $Y_{CN}P^{I}Bu_{2}$ ·AuCl Preparation of $(Y_{CN})_{2}PPh$ ·AuCl Preparation of $(Y_{CN})_{2}PCy$ ·AuCl Preparation of $(Y_{CN})_{2}P^{I}Bu$ ·AuCl Preparation of $(Y_{CN})_{2}PCy$ ·Rh(acac)CO Procedures for the gold-catalyzed reactions	5 6 7 7 7
	1.4.1 1.4.2 1.4.3 1.4.4 1.4.5 1.4.6 1.4.7 1.4.8 1.4.9 1.5	General procedure for the gold-catalysed hydroamination Synthesis of Phenyl-(1-phenylethylidene)amine Synthesis of 1-Phenyl- <i>N</i> -(o-tolyl)ethan-1-imine Synthesis of 1-(4-Methoxyphenyl)- <i>N</i> -phenylethan-1-imine Synthesis of a mixture of <i>E</i> - and <i>Z</i> - <i>N</i> -phenylhexan-2-imine Synthesis of <i>N</i> ,1,2-triphenylethan-1-imine Synthesis of 1-(4-fluorophenyl)- <i>N</i> -phenylethan-1-imine Synthesis of a mixture of <i>N</i> ,1-diphenylpropan-1-imine and <i>N</i> ,1-diphenylpropan-2-imine Correlation of the TEP and the buried volume with the reaction rate Procedures for the measurement of the IR-Spectra	7 8 8 9 9 9 9 11
2.	NMR	spectra	13
	2.1	NMR spectra of (Y _{CN}) ₂ PCI and (Y _{CN}) ₃ P	13
	2.2	NMR spectra of the isolated compounds	14
	2.2.1 2.2.2 2.2.3 2.2.4 2.2.5 2.2.6 2.2.7 2.2.8 2.2.9 2.3	$\begin{array}{l} Y_{CN}P^{t}Bu_{2} \\ (Y_{CN})_{2}PPh \\ (Y_{CN})_{2}PCy \\ (Y_{CN})_{2}P^{t}Bu \\ Y_{CN}P^{t}Bu_{2}\cdotAuCl \\ (Y_{CN})_{2}PPh \cdot AuCl \\ (Y_{CN})_{2}PCy \cdot AuCl \\ (Y_{CN})_{2}PCy \cdot AuCl \\ (Y_{CN})_{2}PCy \cdot AuCl \\ (Y_{CN})_{2}PCy \cdot Rh(acac)CO \\ NMR spectra of the isolated compounds of the catalysis \end{array}$	14 16 17 20 22 23 25 26 28
3.	Crys	tal Structure Determination	32
	3.1	General information	32

3.	2 C	Crystal structures of Y _{CN} Phos ligands	36
	3.2.1	Crystal Structure Determination of Y _{CN} PtBu ₂	36
	3.2.2	Crystal Structure Determination of (Y _{CN}) ₂ PPh	40
	3.2.3	Crystal Structure Determination of (Y _{CN}) ₂ PCy	45
	3.2.4	Crystal Structure Determination of (Y _{CN}) ₂ P ^t Bu	48
	3.2.5	Crystal Structure Determination of (Y _{CN}) ₃ P	51
3.	3 C	Crystal structures of metal complexes	54
	3.3.1	Crystal Structure Determination of Y _{CN} P ^t Bu ₂ ·AuCl	54
	3.3.2	Crystal Structure Determination of (Y _{CN}) ₂ PPh·AuCl	57
	3.3.3	Crystal Structure Determination of (Y _{CN}) ₂ PCy·AuCl	59
	3.3.4	Crystal Structure Determination of (Y _{CN}) ₂ P ^t Bu·AuCl	62
	3.3.5	Crystal Structure Determination of (Y _{CN}) ₂ PCy·Rh(CO)(acac)	64
4.	Refere	ences	67

1. Experimental Details

1.1 General methods

All experiments were carried out under a dry, oxygen-free argon atmosphere using standard Schlenk techniques. Involved solvents were dried using an MBraun SPS-800 (THF, toluene, Et₂O, DCM, pentane, hexane) or dried in accordance with standard procedures. H₂O is distilled water. ¹H, ¹³C{¹H}, ¹³C{³¹P, ¹H}, ³¹P{¹H} NMR spectra were recorded on Avance-400 spectrometers at 25 °C if not stated otherwise. All values of the chemical shift are in ppm regarding the δ -scale. All spin-spin coupling constants (J) are printed in Hertz (Hz). To display multiplicities and signal forms correctly the following abbreviations were used: s = singlet, d = doublet, t = triplet, m = multiplet, dd = doublet of doublet, dt = doubletdoublet of triplet, ddd = doublet of doublet of doublet, br = broad signal. Signal assignment was supported by DEPT, APT, HSQC and HMBC experiments and by literature studies on similar compounds.^[1] Elemental analyses were performed on an Elementar vario MICRO-cube elemental analyzer. IR-Spectra were recorded on a Thermo Nicolet iS5 FT-IR in transmission mode with a Specac "Omni-cell" with KBr plates and a 0.1 mm spacer or with a ATR module at 22 °C. (Y-K)^[2], (Y-Na)^[2], dhlorodi(*tert*butyl)phosphine^[3], dichloro(tertbutyl)phosphine[3], dichlorocyclohexylphosphine^[3], (Y_{CN}PCl₂)^[4], (Y_{CN}PPhCl)^[4], and (THT)AuCl^[5] and were prepared according to published procedures. All other reagents were purchased from Sigma-Aldrich, ABCR, Rockwood Lithium or Acros Organics and used without further purification.

1.2 Preparation of the YCNPhos ligands

1.2.1 Preparation of Y_{CN}P^tBu₂

 $Ph_3P \ominus CN$

506 mg (1.37 mmol) sodium yldiide **Y-Na** were dissolved in 15 mL toluene and 0.261 mL (1.37 mmol) of chloro(di-*tert*-butyl)phosphine were added dropwise to the yellow solution. The solution was stirred overnight and filtered to remove the formed NaCl. The solution was concentrated to 8 mL and then overlayered with of 15 mL

hexane. Upon standing for 16 h, the product precipitated. The solvent was removed via syringe from the resulting white solid, which was dried *in vacuo* thus giving the product as a colorless solid (281 mg, 631 μ mol, 46 %). Single crystals suitable for X-ray diffraction analysis could be obtained by slow diffusion of pentane into a benzene solution.

¹H NMR (400.3 MHz, THF-*d*₈) δ = 7.8 – 7.7 (m, 6H; C*H*_{PPh3}), 7.6 – 7.6 (m, 3H; C*H*_{PPh3}), 7.6 – 7.5 (m, 6H; C*H*_{PPh3}), 1.2 (d, ³*J*_{HP} = 11.6, 18H; C(C*H*₃)₃). ¹³C{¹H} NMR (100.7 MHz, THF-*d*₈) δ = 135.1 (dd, ²*J*_{CP} = 8.9, ⁴*J*_{CP} = 2.5; CH_{PPh3, ortho}), 132.9 (d, ⁴*J*_{CP} = 2.9; CH_{PPh3, para}), 129.1 (d, ³*J*_{CP} = 11.9; CH_{PPh3, meta}), 128.4 (dd, ¹*J*_{CP} = 90.0, ³*J*_{CP} = 3.2; CH_{PPh3, ipso}), 127.1 (d, ²*J*_{CP} = 12.1; CCN), 35.2 (dd, ¹*J*_{CP} = 22.2, ³*J*_{CP} = 7.3; PCPC(CH₃)₃), 30.9 (d, ²*J*_{CP} = 15.8 Hz; PCPC(CH₃)₃), 4.5 (dd, ¹*J*_{CP} = 130.2, ³*J*_{CP} = 43.3; PCP). ³¹P{¹H} NMR (162.1 MHz, THF-*d*₈) δ = 29.0 (d, ²*J*_{PP} = 149.6; *P*Ph₃), 17.0 (d, ²*J*_{PP} = 149.7; *P*tBu). Anal. Calcd. for C₂₈H₃₃NP₂: C, 75.49; H, 7.47; N, 3.14. Found: C, 75.15; C, 7.27; N, 2.89. FT-IR (KBr, ATR, cm⁻¹): \tilde{v} = 3060 (w; v_{as, s} (CH₃)), 2855 (w), 2126 (m; v_{as}(CN)), 1587 (w), 1482 (w), 1435 (s), 1100 (s)

1.2.2 Preparation of (Y_{CN})₂PPh

0.513 g (1.51 mmol, 2.05 eq) potassium yldiide **Y-K** were dissolved in 20 mL THF and 0.100 mL (132 mg, 0.737 mmol, 1.00 eq) dichlorophenylphosphine were added dropwise to the yellow solution within a period of 15 min. The resulting solution was stirred overnight upon which a solid formed. The solid was allowed to settle, the supernatant solvent was removed via syringe and the solid was

washed 3 times with 5 mL THF. The solid was dissolved in 5 mL DCM, filtered through a filter canula and covered with a layer of 15 mL pentane. Upon standing for 16 h the product precipitated. The

supernatant solvent was removed via syringe from the resulting white solid which was dried in vacuo giving the product as a colorless solid (372 mg, 525 µmol, 71 %).

<u>Alternative route</u>: 1.00 g (2.95 mmol, 1.05 eq) potassium yldiide **Y-K** and 1.24 g (2.79 mmol, 1.00 eq) 2-(chloro(phenyl)phosphanyl)-2-(triphenyl-I5-phosphanylidene)acetonitrile **Y**_{CN}**PCIPh** were dissolved in 20 mL THF. The solution was stirred overnight upon which a solid formed. The solid was allowed to settle, the supernatant solvent was removed via syringe and the solid was washed with 3 times 5 mL THF each. The solid was dissolved in 15 mL DCM, filtered through filter canula and covered with a layer of 30 mL pentane. Upon standing for 16 h the product precipitated. The solvent was removed via syringe from the resulting white solid, which was dried *in vacuo*, thus giving the product as a colorless solid (766 mg, 1.08 mmol, 77 %).

¹H NMR (400.3 MHz, CD₂Cl₂) δ = 7.65 – 7.48 (m, 20H; CH_{PPh3, PPh}), 7.44 – 7.35 (m, 12H; CH_{PPh3}), 7.37 – 7.28 (m, 2H; CH_{PPh}), 7.23 – 7.15 (m, 1H; CH_{PPh}). ¹³C{¹H} NMR (100.7 MHz, CD₂Cl₂) δ = 144.6 (td, ¹J_{CP} = 11.0, ³J_{CP} = 7.4; C_{PPh, ipso}), 134.3 (dd, ²J_{CP} = 9.6, ⁴J_{CP} = 2.4; CH_{PPh3, ortho}), 132.8 (d, ⁴J_{CP} = 2.8; CH_{PPh3}, para), 131.2 (d, ²J_{CP} = 18.3; CH_{PPh, ortho}), 129.1 (d, ³J_{CP} = 12.3; CH_{PPh3, meta}), 128.2 (d, ³J_{CP} = 4.9; CH_{PPh, meta}), 126.9 (dd, ¹J_{CP} = 90.8, ³J_{CP} = 3.4; C_{PPh3, ipso}); 126.7 (s; CH_{PPh, para}), 125.5 (d, ²J_{CP} = 12.8; CCN), 11.2 (ddd, ¹J_{CP} = 127.9, ¹J_{CP} = 36.2, ³J_{CP} = 7.0; PCP). ³¹P{¹H} NMR (162.1 MHz, CD₂Cl₂) δ = 26.7 (d, ²J_{PP} = 160.0; PPh₃), -26.4 (dd, ²J_{PP} = 160.2; PPh). Anal. Calcd. for C₄₇H₃₇Cl₂N₂P₃: C, 71.13; H, 4.70; N, 3.53. Found: C, 71.07; H, 4.47; N, 3.71. FT-IR (KBr, ATR, cm⁻¹): \tilde{v} = 3054 (w; v_s (CH)), 2134 (s; v_{as}(CN)), 1587 (w), 1481 (w; δ_s (CH₂)), 1435 (s), 1267 (s), 1099 (s).

1.2.3 Preparation of (Y_{CN})₂PCy

1.36 g (4.00 mmol, 2.05 eq) potassium yldiide **Y-K** were dissolved in 20 mL THF and 0.300 mL (361 mg, 1.95 mmol, 1.00 eq) dichlorocyclohexylphosphine were added dropwise to the yellow solution within 8 min. The solution was stirred overnight upon which a solid formed. The solid was allowed to settle, the supernatant solvent was removed via syringe. The solid was dissolved in 115

mL DCM, filtered through filter canula and covered with a layer of 100 mL pentane Upon standing for 16 h the product precipitated. The solvent was removed via syringe from the solid, which was dried *in vacuo* thus giving the product as a colorless solid (1.02 g, 1.43 mmol, 73 %).

¹H NMR (400.3 MHz, CD₂Cl₂) δ = 7.61 – 7.51 (m, 6H), 7.51 – 7.41 (m, 11H), 7.39 – 7.26 (m, 12H), 2.47 – 2.28 (m, 1H), 2.04 – 1.82 (m, 2H), 1.67 – 1.42 (m, 3H), 1.39 – 1.23 (m, 2H), 1.09 – 0.94 (m, 1H), 0.78 – 0.64 (m, 2H). ¹³C{¹H} NMR (100.7 MHz, CD₂Cl₂) δ = 134.4 (dd, ²J_{CP} = 9.6, 2.5; CH_{PPh3, ortho}), 132.5 (d, ⁴J_{CP} = 2.7; CH_{PPh3, para}), 128.9 (d, ³J_{CP} = 12.3; CH_{PPh3, meta}), 127.4 (dd, ¹J_{CP} = 90.4, ³J_{CP} = 2.5; C_{PPh3, ipso}), 125.7 (d, ²J_{CP} = 13.0; CCN), 37.5 (td, ¹J_{CP} = 8.9, ³J_{CP} = 2.2; CH, _{Cy}-1), 30.4 (d, ²J_{CP} = 18.3; CH₂, _{Cy}-2), 27.2 (d, ³J_{CP} = 7.7; CH₂, _{Cy}-3), 27.1 (s; CH₂, _{Cy}-4), 9.1 (ddd, ¹J_{CP} = 127.6, ¹J_{CP} = 43.1, ³J_{CP} = 5.9). ³¹P{¹H} NMR (162.2 MHz, CD₂Cl₂) δ = 26.0 (d, ²J_{PP} = 140.8; *P*Ph₃), -31.2 (t, ²J_{PP} = 140.5; *P*Cy). Anal. Calcd. for C47.5H44Cl₃N₂P₃: C, 67.75; H, 5.42; N, 3.50. Found: C, 67.84; H, 5.250; N, 3.36. FT-IR (KBr, ATR, cm⁻): \tilde{v} = 3054 (w; v_s (CH)), 2921 (m; v_s (CH₂)), 2847 (m; v_s (CH₂)), 2131 (s; v_{as}(CN)), 1586 (w), 1481 (w; δ_s (CH₂)), 1435 (s), 1263 (m), 1098 (s).

1.2.4 Preparation of (Y_{CN})₂P^tBu

 $\begin{array}{c|c} \mathsf{CN} & \mathsf{CN} \\ \oplus & \downarrow & \downarrow \oplus \\ \mathsf{Ph}_3\mathsf{P} & \bigcirc \mathsf{P} & \bigcirc \mathsf{PPh}_3 \\ t & \mathsf{Bu} \end{array}$

500 mg (1.47 mmol) potassium yldiide **Y-K** were dissolved in 5 mL dry THF and a solution of 114 mg (719 µmol) dichloro-*tert*-butylphosphine in 25 mL dry THF was added dropwise. The solution was stirred overnight. The solution was transferred to a centrifuge flask and was centrifuged at 2000 rpm for 20 min. The supernatant

solvent was removed via syringe from the settled solid and the solid was washed with 30 mL THF and again centrifuged. The solid was extracted 3 time with 30 mL DCM and filtered through filter canula. The combined solutions were covered with a layer of 30 mL pentane. Upon standing for 16 h the product

precipitated. The solvent was removed *in vacuo* thus giving the product as a white solid. (320 mg, 464 µmol, 64 %)

¹H NMR (400.3 MHz, CD₂Cl₂) δ = 7.60 – 7.53 (m, 6H; CH_{PPh3}), 7.52 – 7.45 (m, 12H; CH_{PPh3}), 7.41 – 7.34 (m, 12H; CH_{PPh3}) 0.93 (d, ³J_{HP} = 13.9 Hz, 9H; C(CH₃)₃). ¹³C{¹H} NMR (100.7 MHz, CD₂Cl₂) δ = 134.6 (dd, ²J_{CP} = 9.3, ⁴J_{CP} = 2.5; CH_{PPh3}, ortho), 132.6 (d, ⁴J_{CP} = 2.7; CH_{PPh3}, para), 128.9 (d, ³J_{CP} = 12.2; CH_{PPh3}, meta), 127.5 (dd, ¹J_{CP} = 90.3, ³J_{CP} = 3.5; CH_{PPh3}, ipso), 127.1 (d, ²J_{CP} = 12.8; CCN), 36.7 (dd, ¹J_{CP} = 17.6, ³J_{CP} = 9.8; PCPC(CH₃)₃), 28.5 (d, ²J_{CP} = 16.7 Hz; PCPC(CH₃)₃), 7.7 (ddd, ¹J_{CP} = 125.3, ¹J_{CP} = 41.7, ³J_{CP} = 8.3; PCP). ³¹P{¹H} NMR (162.1 MHz, CD₂Cl₂) δ = 27.9 (d, ²J_{PP} = 161.2; PPh3), -24.4 (t, ²J_{PP} = 161.2; PtBu). Anal. Calcd. for C₂₈H₃₃AuCINP₂: C, 49.61; H, 4.91; N, 2.07. Found: C, 49.27; H, 4.73; N, 2.07. FT-IR (KBr, ATR, cm⁻¹): \tilde{v} = 3048 (w; v_{as, s} (CH₃)), 2851 (w), 2128 (s; v_{as}(CN)), 1587 (w), 1481 (w), 1436 (s), 1103 (s)

1.2.5 Preparation of (Y_{CN})₂PCI

 $\begin{array}{c|c} \mathsf{CN} & \mathsf{CN} \\ \oplus & \downarrow & \downarrow \oplus \\ \mathsf{Ph}_3\mathsf{P} & \bigcirc \mathsf{P} & \bigcirc \mathsf{PPh}_3 \\ \mathsf{CI} \end{array}$

203 mg (597 μ mol) potassium yldiide **Y-K** and 240 mg (597 μ mol) 2-(dichlorophosphanyl)-2-(triphenyl-I5-phosphanylidene)acetonitrile **Y**_{CN}**PCI**₂ were dissolved in 25 mL THF. The solution was stirred overnight, upon which a solid formed. The supernatant solvent was then removed via syringe, the obtained solid

dissolved in 15 mL DCM and was filtered through s filter canula. The solution was overlayered with of 25 mL pentane. Upon standing for 16 h the product with Y-H₂Cl precipitated.

¹H NMR (400.3 MHz, CD₂Cl₂) δ = 8.03 – 7.20 (m, 30H; C*H*_{PPh3}). ³¹P{¹H} NMR (162.1 MHz, CD₂Cl₂): δ = 112.4 (t, ²*J*_{PP} = 167.9 Hz; *P*Cl), 24.8 (d, ²*J*_{PP} = 168.2 Hz; *P*Ph₃)

1.2.6 Preparation of (Y_{CN})₃P

230 mg (345 μ mol) of (Y_{CN})₂PCI (with impurities of phosphonium salt) and 117 mg (345 μ mol) potassium yldiide **Y-K** were dissolved in 10 mL THF. The solution was stirred overnight, upon which a solid formed. The supernatant solvent was then removed via syringe, the obtained solid dissolved in 4 mL DCM and was filtered through a filter canula. The solution was covered with a layer of 15 mL pentane.

Upon standing for 16 h the product with Y-H₂Cl precipitated. Single yellow crystals suitable for x-ray diffraction could be obtained by slow diffusion of pentane into a THF solution.

 $^{31}P{^{1}H} NMR (162.1 \text{ MHz}, CD_2Cl_2): = 23.0 (d, ^{2}J_{PP} = 154.5 \text{ Hz}; PPh_3), -33.3 - -40.8 (br, P(CP)_3)$

1.3 Preparation of the metal complexes

1.3.1 Preparation of Y_{CN}P^tBu₂·AuCl

(469 mg, 1.05 mmol) of $Y_{CN}P^tBu_2$ and (THT)AuCl (340 mg, 1.06 mmol) were dissolved in 2 mL dry THF and stirred overnight giving a suspension of the product complex. The supernatant solvent was removed via syringe and the solid was dissolved in 8 mL DCM and covered with a layer of 16 mL pentane. Upon standing for 16 h the product precipitated. The supernatant solvent was removed with a

syringe from the solid which was dried in vacuo, thus giving the product as a colorless solid (585 mg, 863 mmol, 82 %).

¹H NMR (400.3 MHz, CD₂Cl₂) δ = 7.86 – 7.77 (m, 6H; CH_{PPh3}), 7.76 – 7.67 (m, 3H; CH_{PPh3}, para), 7.63 – 7.52 (m, 6H; CH_{PPh3}), 1.46 (d, ³J_{HP} = 16.0 Hz, 18H; C(CH₃)₃). ¹³C{¹H} NMR (100.7 MHz, CD₂Cl₂) δ =

134.7 (d, ${}^{2}J_{CP}$ = 9.4; CH_{PPh3, ortho}), 133.9 (d, ${}^{4}J_{CP}$ = 3.0; CH_{PPh3, para}), 129.8 (d, ${}^{3}J_{CP}$ = 12.5; CH_{PPh3, meta}), 126.3 (d, ${}^{2}J_{CP}$ = 6.9; CCN), 124.8 (d, ${}^{1}J_{CP}$ = 92.4; C_{PPh3, ipso}), 40.7 (dd, ${}^{1}J_{CP}$ = 30.5, ${}^{3}J_{CP}$ = 3.0; PCPC(CH₃)₃), 30.9 (d, ${}^{3}J_{CP}$ = 6.2; PCPC(CH₃)₃), 6.8 (dd, ${}^{1}J_{CP}$ = 125.1, ${}^{3}J_{CP}$ = 55.7; PCP). ${}^{31}P{}^{1}H$ NMR (162.1 MHz, CD₂Cl₂) δ = 56.1 (d, ${}^{2}J_{PP}$ = 45.5; *P*Bu), 29.4 (d, ${}^{2}J_{PP}$ = 45.9; *P*Ph₃). Anal. Calcd. for C₂₈H₃₃AuCINP₂: C, 49.61; H, 4.91; N, 2.07. Found: C, 49.27; H, 4.72; N, 2.07. FT-IR (KBr, ATR, cm⁻¹): \tilde{v} = 2914 (m), 2846 (m), 2146 (m; vas(CN)), 1481 (w), 1434 (s), 1099 (s)

1.3.2 Preparation of (Y_{CN})₂PPh·AuCl

(126 mg, 178 μ mol) of (Y_{CN})₂**PPh** and (THT)AuCl (57.0 mg, 178 μ mol) were dissolved in 2 mL dry THF and stirred overnight upon which a solid formed. The solid was allowed to settle, the supernatant solvent was removed via syringe and the solid was dissolved in 7.5 mL DCM and covered with a layer of 20 mL pentane. Upon standing for 16 h the product precipitated. The supernatant

solvent was removed via syringe from the solid, which was dried in vacuo thus giving the product as a colorless solid (151 mg, 160 μ mol, 90 %).

¹H NMR (400.3 MHz, CD₂Cl₂) δ = 7.81 – 7.71 (m, 2H; C*H*_{PPh}), 7.71 – 7.60 (m, 18H; C*H*_{PPh}3), 7.54 – 7.43 (m, 12H; C*H*_{PPh}3), 7.39 – 7.32 (m, 1H; C*H*_{PPh}), 7.32 – 7.26 (m, 2H; C*H*_{PPh}). ¹³C NMR (100.7 MHz, CD₂Cl₂) δ = 138.4 (d, ¹J_{CP} = 66.5; C_{PPh}, ipso), 134.7 (d, ²J_{CP} = 10.1; C*H*_{PPh}3, ortho), 133.6 (d, *J*=2.8; C*H*_{PPh3}, para), 133.1 (d, ²J_{CP} = 15.8; C*H*_{PPh}, ortho), 131.0 (d, ⁴J_{CP} = 2.7; C*H*_{PPh3}, ipso), 124.0 (d, ²J_{CP} = 8.7; C*C*N), 11.8 (dd, ¹J_{CP} = 120.9, ¹J_{CP} = 74.0, ³J_{CP} = 7.5; PCP). ³¹P NMR (162.1 MHz, CD₂Cl₂) δ = 24.4 (d, ²J_{PP} = 62.5; *P*Ph₃), 16.5 (dd, ²J_{PP} = 62.6; *P*Ph). Anal. Calcd. for C₄₇H₃₇AuCl₃N₂P₃: C, 55.02; H, 3.63; N, 2.73. Found: C, 55.34; H, 3.56; N, 3.11. FT-IR (KBr, ATR, cm⁻¹): \tilde{v} =3056 (w), 2150 (m; vas(CN)), 2136 (m; vas(CN)), 1587 (w), 1481 (w), 1435 (s), 1171 (s), 1101 (s)

1.3.3 Preparation of (Y_{CN})₂PCy·AuCl

(126 mg, 178 μ mol) of (Y_{CN})₂PCy and (THT)AuCl (57.0 mg, 178 μ mol) were dissolved in 2 mL dry THF and stirred upon which a solid formed. The solid was allowed to settle, the supernatant solvent was removed via syringe and the solid was dissolved in 7.5 mL DCM and overlayered with of 20 mL pentane. Upon standing for 16 h the product precipitated. The supernatant solvent was removed

with a syringe from the solid, which was dried in vacuo thus giving the product as a colorless solid (331 mg, 349 μ mol, 83 %).

¹H NMR (400.3 MHz, CD₂Cl₂) δ = 7.80 – 7.69 (m, 12H; CH_{PPh3}), 7.69 – 7.62 (m, 6H; CH_{PPh3}), 7.54 – 7.43 (m, 12H; CH_{PPh3}), 2.31 – 2.15 (m, 1H; CH_{Cy}), 2.15 – 2.00 (m, 2H; CH₂, cy), 1.81 – 1.68 (m, 2H; CH₂, cy), 1.68 – 1.58 (m, 1H; CH₂, cy), 1.37 – 1.05 (m, 5H; CH₂, cy). ¹³C{¹H} NMR (100.7 MHz, CD₂Cl₂) δ = 134.2 (d, ²J_{CP} = 9.9; CH_{PPh3}, ortho), 133.2 (d, ⁴J_{CP} = 3.1; CH_{PPh3}, para), 129.2 (d, ³J_{CP} = 12.6; CH_{PPh3}, meta), 124.7 (dd, ¹J_{CP} = 92.2, ¹J_{CP} = 1.0; C_{PPh3}, ipso), 124.2 (d, ²J_{CP} = 8.1; CCN), 41.2 (d, ¹J_{CP} = 48.5, ²J_{CP} = 3.88; CH_{Cy-1}), 30.2 (d, ²J_{CP} = 3.8; CH_{Cy-2}), 26.6 (d, ³J_{CP} = 16.0; CH_{Cy-3}), 25.9 (d, ⁴J_{CP} = 1.6; CH_{Cy-4}), 11.6 (ddd, ¹J_{CP} = 121.9, ¹J_{CP} = 62.1, ³J_{CP} = 3.8; PCP). ³¹P{¹H} NMR (162.1 MHz, CD₂Cl₂) δ = 24.4 (d, ²J_{PP} = 51.3; PPh₃), 18.5 (t, ²J_{PP} = 50.9; PCy). Anal. Calcd. for C4₆H₄₁AuClN₂P₃: C, 58.33; H, 4.36; N, 2.96. Found: C, 58.01; H, 4.312; N, 2.91. FT-IR (KBr, ATR, cm⁻¹): \tilde{v} = 3054 (w), 2918 (m), 2846 (m), 2140 (m; v_{as}(CN)), 1586 (w), 1481 (w), 1434 (m), 1097 (s)

1.3.4 Preparation of (Y_{CN})₂P^tBu·AuCl

(83.0 mg, 113 μ mol) of $(Y_{CN})_2 P^t Bu$ and (THT)AuCl (36.2 mg, 113 μ mol) were dissolved in 2 mL dry THF and stirred overnight upon which a solid formed. The solid was allowed to settle, the supernatant solvent was removed via syringe and the solid was dissolved in 5 mL DCM and the resulting solution covered with a layer of 15 mL pentane. Upon standing for 16 h the product precipitated. The

supernatant solvent was removed via syringe from the resulting solid, which was dried in vacuo thus giving the product as a colorless solid (34.0 mg, 36.9 µmol, 33 %).

¹H NMR (400.3 MHz, CD_2Cl_2) $\delta = 7.83 - 7.73$ (m, 12H; $CH_{PPh3, ortho}$), 7.65 (m, 6H; $CH_{PPh3, para}$), 7.49 (m, 12H; $CH_{PPh3, meta}$), 1.33 - 1.24 (m, 9H; $C(CH_3)_3$). ¹³C{³¹P, ¹H} NMR (100.7 MHz, CD_2Cl_2) $\delta = 134.7$ ($CH_{PPh3, ortho}$), 133.6 ($CH_{PPh3, para}$), 129.9 ($CH_{PPh3, meta}$), 125.6 ($CH_{PPh3, ipso}$), 125.2 (CCN), 42.1 ($PCPC(CH_3)_3$), 28.6 ($PCPC(CH_3)_3$), 11.3 (PCP). ³¹P{¹H} NMR (162.1 MHz, CD_2Cl_2) $\delta = 26.58$, 26.41, 26.15, 26.07, 25.98, 25.95, 25.71, 25.47 (m) spectra of higher order (AB₂ spin pattern). Calcd. Parameters: $\delta = 26.2$, 25.8; ²J_{PP} = 55.1. Anal. Calcd. for C₄₄H₃₉AuCIN₂P₃: C, 57.37; H, 4.27; N, 3.04. Found: C, 57.28; H, 4.24; N, 3.11.FT-IR (KBr, ATR, cm⁻¹): $\tilde{v} = 3054$ (w), 2961 (m), 2854 (m), 2147 (m; v_{as}(CN)), 2134 (m; v_{as}(CN)), 1480 (w), 1435 (m), 1259 (m), 1095 (s)

1.3.5 Preparation of (Y_{CN})₂PCy·Rh(acac)CO

13.9 mg (194 µmol) of $(Y_{CN})_2PCy$ and (acetylacetonato)dicarbonyl rhodium(I) (5.00 mg, 194 µmol) were dissolved in 1 mL dry DCM. After the gas evaporation stopped, the solvent was removed in vacuo. The solid was dissolved in 1 mL CDCl₃. Orange crystals could be obtained by slow evaporation of pentane. The supernatant solvent was removed with a syringe from the resulting orange solid, which was dried in vacuo

thus giving the product as a orange solid (6.10 mg, 6.35 µmol, 33 %).

¹H NMR (400.3 MHz, CDCl₃) δ = 7.94 – 7.83 (m, 12H; CHPPh3, ortho), 7.56 – 7.47 (m, 6H; CHPPh3, para), 7.47 – 7.37 (m, 12H; CHPPh3, meta), 5.10 (s, 1H; COCHCO), 2.01 – 1.91 (m, 2H; CH₂, PCy), 1.80 (s, 3H; COCH₃), 1.67 – 1.46 (m, 6H; CH₂, PCy), 1.33 (s, 4H; COCH₃, CH, PCy), 1.11 (q, J=13.5, 12.9, 1H; CH₂, PCy), 0.95 – 0.76 (m, 2H; CH₂, PCy). ¹³C{¹H} NMR (100.7 MHz, CDCl₃) δ = 189.8 (br; RhCO), 185.8 (s; CCCO), 183.7(s; CCCO), 134.8 (d, ²JCP = 9.8; CHPPh3, ortho), 132.4 (d, ⁴JCP = 2.7; CHPPh3, para), 128.6 (d, ³JCP = 12.8; CHPPh3, meta), 126.4 (d, ²JCP = 7.8; CCN), 126.3 (d, ¹JCP = 92.0; CPPh3, ipso), 100.9 (s; COCHCO), 44.4 (d, ¹JCP = 40.5; CH, PCy, C-1), 28.8 (s; CH₂, PCy, C-2,2), 27.7 (d, ³JRhC = 5.7; COCH₃), 27.2 (s; CH₂, PCy, C-3), 27.1 (s; CH₂, PCy, C-3'), 26.4 (s; CH₂, PCy, C-4), 25.9 (s; COCH₃), 12.6 – 10.0 (m; PCP). ³¹P{¹H} NMR (162.2 MHz, CDCl₃) δ = 45.5, 25.1 (d, ²JPP = 56.9; PPh₃).

1.4 Procedures for the gold-catalyzed reactions

1.4.1 General procedure for the gold-catalysed hydroamination

A 2 mL glass vial with a rubber cap and a stir bar was charged in a glovebox with the indicated amount of LAuCl and NaBAr^F. The amine (5.05 mmol) and the alkyne (5.0 mmol) were added outside the glovebox via syringe or directly as a solid. The vial was heated in a metal block to the indicated temperature (e.g. RT or 50 °C) while stirring. Small aliquots were removed by syringe and added directly to an NMR tube to monitor reaction progress. In order to prevent ketone formation molecular sieve was added to the NMR tube. Yields were calculated by integration of the peak for the alkyne starting material with respect to the peak for the imine product in the ¹H NMR spectrum.

The results of the catalyst comparison are presented in Figure 5 and Table 3 in the manuscript. For comparison we also tested CyJohnPhos in the catalysis. The results are given in the following Table:

Table S1. Results of the hydroamination of phenylacetylene with aniline with CyJohnPhos·AuCl as catalyst at 50 °C; reaction conditions as mentioned above.

Time [h]	Conversion [%]
1	86
3	98
5	99
24	100

1.4.2 Synthesis of Phenyl-(1-phenylethylidene)amine

 $Y_{CN}P^tBu_2$ -AuCl (14 mg, 20 µmol), NaBAr^{F4} (18 mg, 20 µmol), Aniline (1.8 mL, 1.9 g, 20 mmol) and Phenylacetylene (2.2 mL, 2.0 g, 20 mmol) were added to a flask. The solution was heated to 50 °C and stirred for 5 h. An NMR of the reaction mixture indicated complete conversion. The contents of the flask were directly distilled through a 10 cm vigreux column at 0.1 mbar. After a small forerun at ~40° C the product was collected at 144-146 °C as a light yellow liquid that solidified upon standing. (3.3 g, 17 mmol, 85 %)

¹H NMR (400.3 MHz, CDCl₃): δ = 8.02 – 7.95 (m, 2H), 7.49 – 7.41 (m, 3H), 7.39 – 7.31 (m, 2H), 7.13 – 7.06 (m, 1H), 6.84 – 6.78 (m, 2H), 2.24 (s, 3H).

1.4.3 Synthesis of 1-Phenyl-N-(o-tolyl)ethan-1-imine

 $Y_{CN}P^tBu_2$ -AuCl (14 mg, 20 µmol), NaBAr^{F4} (18 mg, 20 µmol), o-Toluidine (2.1 mL, 2.1 g, 20 mmol) and Phenylacetylene (2.2 mL, 2.0 g, 20 mmol) were added to a flask. The solution was heated to 50 °C and stirred for 5 h. An NMR of the reaction mixture indicated complete conversion. The contents of the flask were directly distilled through Kugelrohr distillation at 0.1 mbar. After a small forerun at 90° C the product was collected at 110 °C as a light yellow liquid that solidified upon standing. (3.5 g, 17 mmol, 84 %)

¹H NMR (400.3 MHz, CDCl₃): δ = 8.07 – 7.98 (m, 2H), 7.52 – 7.43 (m, 3H), 7.25 – 7.14 (m, 2H), 7.05 – 6.97 (m, 1H), 6.71 – 6.61 (m, 1H), 2.18 (s, 3H), 2.11 (s, 3H).

1.4.4 Synthesis of 1-(4-Methoxyphenyl)-N-phenylethan-1-imine

Y_{CN}**P**^t**Bu**₂**·AuCI** (14 mg, 20 μmol), NaBAr^F₄ (18 mg, 20 μmol), 4-Methoxyaniline (2.6 g, 20 mmol) and Phenylacetylene (2.2 mL, 2.0 g, 20 mmol) were added to a flask. The solution was heated to 50 °C and stirred for 5 h. An NMR of the reaction mixture indicated complete conversion. The contents of the flask were directly distilled through Kugelrohr distillation at 0.1 mbar. After a small forerun at 90° C the product was collected at 150 °C as a light yellow liquid that solidified upon standing. (3.8 g, 17 mmol, 83 %)

 ^1H NMR (400.3 MHz, CDCl_3): δ = 8.01 – 7.93 (m, 2H), 7.49 – 7.40 (m, 3H), 6.94 – 6.87 (m, 2H), 6.80 – 6.74 (m, 2H), 3.82 (s, 3H), 2.26 (s, 3H).

1.4.5 Synthesis of a mixture of *E*- and *Z*-*N*-phenylhexan-2-imine

(Y_{CN})₂**PCy-AuCl** (38 mg, 40 µmol), NaBAr^F₄ (36 mg, 40 µmol), Aniline (1.8 mL, 1.9 g, 20 mmol) and 1-Hexyne (2.3 mL, 1.6 g, 20 mmol) were added to a flask. The solution was heated to 80 °C and stirred for 24 h. The contents of the flask were directly distilled through Kugelrohr distillation at $1 \cdot 10^{-3}$ mbar. After a small forerun at 40 °C the product was collected at 120 °C. (2.6 g, 15 mmol, 77 %)

Z-N-phenylhexan-2-imine

¹H NMR (400.3 MHz, CDCl₃): δ = 7.32 – 7.23 (m, 2H), 7.07 – 6.98 (m, 1H), 6.72 – 6.65 (m, 2H), 2.46 – 2.37 (m, 2H), 1.77 (s, 3H), 1.71 – 1.16 (m, 4H), 0.97 (t, *J*=7.4, 3H).

E-N-phenylhexan-2-imine

¹H NMR (400.3 MHz, CDCl₃): δ = 7.32 – 7.23 (m, 2H), 7.07 – 6.98 (m, 1H), 6.72 – 6.65 (m, 2H), 2.15 (s, 3H), 2.13 (t, *J*=7.9, 2H), 1.71 – 1.16 (m, 4H), 0.81 (t, *J*=7.4, 3H).

1.4.6 Synthesis of N,1,2-triphenylethan-1-imine

 $(Y_{CN})_2$ PCy-AuCI (38 mg, 40 µmol), NaBAr^F₄ (36 mg, 40 µmol), Aniline (1.8 mL, 1.9 g, 20 mmol) and Diphenylacetylen (3.6 g, 20 mmol) were added to a flask. The solution was heated to 80 °C and stirred for 48 h. The contents of the flask were directly distilled through Kugelrohr distillation at $1 \cdot 10^{-3}$ mbar. After a small forerun at 40 °C the product was collected at 130 °C. (3.9 g, 14 mmol, 72 %)

¹H NMR (400.3 MHz, CDCl₃) δ = 8.77 – 6.57 (m, 15H), 4.17 (s, 1H) amine peak not observed.

1.4.7 Synthesis of 1-(4-fluorophenyl)-N-phenylethan-1-imine

(Y_{CN})₂**PCy-AuCI** (19 mg, 20 µmol), NaBAr^F₄ (18 mg, 20 µmol), Aniline (1.8 mL, 1.9 g, 20 mmol) and 4-Fluorophenylacetylene (2.6 mL, 2.4 g, 20 mmol) were added to a flask. The solution was heated to 50 °C and stirred for 24 h. The contents of the flask were directly distilled through Kugelrohr distillation at $1 \cdot 10^{-3}$ mbar. After a small forerun at 40 °C the product was collected at 120 °C. (3.9 g, 14 mmol, 72 %)

 1H NMR (400.3 MHz, CDCl₃) δ = 8.18 – 7.81 (m, 2H), 7.43 – 7.32 (m, 2H), 7.19 – 7.01 (m, 3H), 6.85 – 6.65 (m, 2H), 2.22 (s, 3H).

1.4.8 Synthesis of a mixture of *N*,1-diphenylpropan-1-imine and *N*,1-diphenylpropan-2imine

 $(Y_{CN})_2$ PCy-AuCl (38 mg, 40 µmol), NaBAr^F₄ (36 mg, 40 µmol), Aniline (1.8 mL, 1.9 g, 20 mmol) and 1-Phenyl-1-propyne (2.5 mL, 2.3 g, 20 mmol) were added to a flask. The solution was heated to 80 °C and stirred for 48 h. The contents of the flask were directly distilled through Kugelrohr distillation at 1 · 10⁻³ mbar. After a small forerun at 40 °C the product was collected at 110 °C. (3.9 g, 14 mmol, 72 %)

N,1-diphenylpropan-1-imine:

¹H NMR (400.3 MHz, CDCl₃) δ = 7.43 – 7.35 (m, 2H), 7.31 – 7.16 (m, 4H), 3.65 (s, 2H), 6.77 – 6.69 (m, 2H), 6.69 – 6.61 (m, 2H), 1.63 (s, 3H).

N,1-diphenylpropan-2-imine:

¹H NMR (400.3 MHz, CDCl₃) $\delta = \delta$ 7.86 – 7.83 (m, 2H), 7.31 – 7.16 (m, 4H), 7.06 – 6.94 (m, 4H), 2.58 (q, ³*J*_{HH} = 7.6, 2H), 1.00 (t, ³*J*_{HH} = 7.6, 3H).

1.4.9 Correlation of the TEP and the buried volume with the reaction rate

Table S2. Data for the correlation of the buried volume with the obtained yield.

ligand	%V _{bur}	Conversion after 3h, @ 50°C	Conversion after 24h @rt
(Y _{CN})PPh ₂	44,3	55	53
(Y _{CN})PCy ₂	45,4	93	82
(Y _{CN})PtBu ₂	50,8	97	98
(Y _{CN}) ₂ PPh	57,2	64	53
(Y _{CN}) ₂ PCy	55,2	97	84
(Y _{CN})₂P <i>t</i> Bu	62,7	84	63

Figure S1. Correlation between the yield and the buried volume of the mono- and diylidephosphine; No linear correlation.

Table S 3. Data for the Correlation of the buried volume with the observed/actual reaction rate and the difference between the expected and actual reaction rate. The expected reaction rate was calculated based on the formula for the correlation between the TEP and the reaction rate for the monoylidephosphines (Figure 6).

ligand	$%V_{bur}$	expected rate, r _e [M/h]	actual rate, r _a [M/h]	r _e – r _a [M/h]	expected rate, r _e [M/h]	actual rate, r _a [M/h]	$r_e - r_a \left[M/h ight]$
(Y _{CN})PPh ₂	44,3	2,29	2,33	-0,04	0,39	0,39	0,01
(Y _{CN})PCy ₂	45,4	5,46	4,76	0,70	1,15	0,92	0,23
(Y _{CN})PtBu ₂	50,8	6,31	6,70	-0,39	1,36	1,46	-0,10
(Ycℕ)₂PPh	57,2	4,35	2,43	1,93	0,89	0,39	0,50
(Үсм)2РСу	55,2	6,13	6,21	-0,08	1,31	0,63	0,68
(Ycn)₂P <i>t</i> Bu	62,7	6,56	3,59	2,97	1,42	0,32	1,10

Figure S2. Correlation of the buried volume with the observed/actual reaction rate r_a and the difference between the expected and actual reaction rate (r_e - r_a).

ligands	TEP	Rate between 0-30 min [M/h]	Rate between 0-1 h [M/h]	Rate between 0-1 h [M/h]	Rate between 0-3 h [M/h]
(Y _{CN})PPh ₂	2066,7	2,33	1,55	0,27	0,39
(Y _{CN})PCy ₂	2057,8	4,76	3,40	0,53	0,92
(Y _{CN})PtBu ₂	2055,4	6,70	3,93	0,78	1,46
(Y _{CN})₂PPh	2060,9	2,43	1,84	0,28	0,39
(Y _{CN}) ₂ PCy	2055,9	6,21	3,59	0,49	0,63
(Y _{CN})₂P <i>t</i> Bu	2054,7	3,59	2,52	0,26	0,32

Table S4. Data for the correlation between the Tolman electronic parameter and the reaction rate.

Reaction rates were measured within the first 30 and 60 min of the reactions at 50°C and between the first and the first three hours of the reactions at RT. Since a true linear progression is only the case of the shorter reaction times (c.f. Figure 5), the correlation with these rates are discussed in the manuscript, albeit the fit for the longer reaction times is slightly better (Figure S2).

Figure S3. Correlation between the TEP and the reaction rates obtained with the monoylide phosphine-based catalysts

1.5 Procedures for the measurement of the IR-Spectra

Procedure for $\tilde{v}(CO)_{Rh}$ determination:^[6] 5 mg (19.4 µmol) Rh(acac)(CO)₂ were dissolved in 1 mL of DCM in a glovebox. 19.4 µmol of the phosphine were added to the solution and the solution was stirred for 15 min until gas evolution ceased. The solution was added into the IR cell using a syringe. The cell was closed, taken outside the glovebox and an IR spectrum was recorded. Independent of the phosphine used the IR spectrum always shows two strong bands at 2083.4 cm⁻¹ and 2011.8 cm⁻¹ (acac vibrations) which are almost identical to the IR peaks observed in Rh(acac)(CO)₂^[7] and an additional strong band between 1975–1940 cm⁻¹ corresponding to the carbonyl stretching frequency.

Table S5. Survey of phosphorus ligands with known TEP and $\tilde{v}(CO)_{Rh.}$

Ligand	solvent	ν̃(CO) _{Rh}	cald TEP
		[cm ^{-1]}	[cm ^{-1]}
PPh3 ^[6]	CH_2CI_2	1978.0	2069.1
YcnPPh2 ^[3a]	CH_2CI_2	1973.8	2066.7

(Y _{CN}) ₂ PPh	CH_2CI_2	1963.6	2060.9
PCy3 ^[6]	CH_2CI_2	1958.7	2058.1
Y _{CN} PCy ₂ ^[3a]	CH_2CI_2	1958.3	2057.8
(Y _{CN}) ₂ PCy	CH_2CI_2	1955.0	2055.9
P(^t Bu) ₃ ^[6]			2056.1
Y _{CN} P(^t Bu) ₂	CH_2CI_2	1954.1	2055.4

2. NMR spectra

2.1 NMR spectra of (YCN)2PCI and (YCN)3P

Figure S5. ¹H NMR spectrum of (Y_{CN})₂PCI.

Figure S6. ³¹P{¹H} NMR spectrum of (Ycn)₃P.

2.2 NMR spectra of the isolated compounds

2.2.1 Y_{CN}P^tBu₂

Figure S7. ³¹P{¹H} NMR spectrum of Y_{CN}P^tBu₂.

Figure S8. ¹H NMR spectrum of Y_{CN}P^tBu₂ (signal at 0 ppm corresponds to silicon grease).

Figure S9. ¹³C{¹H} NMR spectrum of Y_{CN}P^tBu₂ (signal at 0 ppm corresponds to silicon grease).

Figure S11. ¹H NMR spectra of (Y_{CN})₂PPh (signal at 0 ppm corresponds to silicon grease).

Figure S12. ¹³C{¹H} NMR spectra of (Y_{CN})₂PPh (signal at 0 ppm corresponds to silicon grease).

Figure S13. ³¹P{¹H} NMR spectrum of (Y_{CN})₂PCy in DCM.

Figure S14. ¹H NMR spectrum of (Y_{CN})₂PCy in DCM (signal at 0 ppm corresponds to silicon grease).

Figure S15. ¹³C{¹H} NMR spectrum of (Y_{CN})₂PCy in DCM.

Figure S17. ¹H NMR spectrum of (Y_{CN})₂P^tBu (signal at 0 ppm corresponds to silicon grease).

Figure S18. ¹³C{¹H} NMR spectrum of (Y_{CN})₂P^tBu.

2.2.5 Y_{CN}P^tBu₂·AuCl

Figure S19. ³¹P{¹H} NMR spectrum of Y_{CN}P^tBu₂·AuCl.

Figure S21. ¹³C{¹H} NMR spectrum of Y_{CN}P^tBu₂·AuCl.

Figure S23. ¹H NMR spectrum of **(Y**_{CN})₂**PPh·AuCI** (signal at 0 ppm corresponds to silicon grease; signals between 0.5-2 ppm to traces of solvents).

Figure S24. ¹³C{¹H} NMR spectrum of (Y_{CN})₂PPh·AuCl.

2.2.7 (Y_{CN})₂PCy·AuCl

Figure S25. ³¹P{¹H} NMR spectrum of (Y_{CN})₂PCy·AuCl.

Figure S26. ¹H NMR spectrum of (Y_{CN})₂PCy·AuCI (signal at 0 ppm corresponds to silicon grease).

Figure S27. ¹³C{¹H} NMR spectrum of (Y_{CN})₂PCy·AuCl.

2.2.8 (Y_{CN})₂P^tBu·AuCl

Figure S28. ³¹P{¹H} NMR spectrum of (Y_{CN})₂P^tBu·AuCl.

Figure S29. ¹H NMR spectrum of **(Y**_{CN})₂**P**^t**Bu**·**AuCI** (small signals between 0 and 2 ppm belong to silicon grease and pentane).

Figure S30. ¹³C{³¹P, ¹H} NMR spectrum of (Y_{CN})₂P^tBu·AuCI.

2.2.9 (Y_{CN})₂PCy·Rh(acac)CO

Figure S31. ³¹P{¹H} NMR spectrum of (Y_{CN})₂PCy·Rh(acac)CO.

Figure S32. ¹H NMR spectrum of (Y_{CN})₂PCy·Rh(acac)CO (signal at 0 ppm corresponds to silicon grease).

Figure S33. ¹³C{¹H} NMR spectrum of (Y_{CN})₂PCy·Rh(acac)CO.

2.3 NMR spectra of the isolated compounds of the catalysis

Figure S35. ¹H NMR spectrum of 1-Phenyl-*N*-(o-tolyl)ethan-1-imine.

Figure S36. ¹H NMR spectrum of 1-(4-Methoxyphenyl)-*N*-phenylethan-1-imine (signal at 0 ppm corresponds to silicon grease).

Figure S37. ¹H NMR spectrum of the mixture *E*- and *Z*-*N*-phenylhexan-2-imine.

Figure S39. ¹H NMR spectrum of 1-(4-fluorophenyl)-*N*-phenylethan-1-imine.

Figure S40. ¹H NMR spectrum of the mixture *N*,1-diphenylpropan-1-imine and *N*,1-diphenylpropan-2-imine.

3. Crystal Structure Determination

3.1 General information

Data collection of all compounds was conducted either with an Oxford Synergy $((Y_{CN})_2PCI, (Y_{CN})_2PCy \cdot Rh(CO)(acac))$ or Oxford SuperNova $(Y_{CN}P^tBu_2, (Y_{CN})_2PPh, (Y_{CN})_2PCy, (Y_{CN})_2P^tBu, (Y_{CN})_3P, Y_{CN}P^tBu_2 \cdot AuCI, (Y_{CN})_2PPh \cdot AuCI, (Y_{CN})_2PCy \cdot AuCI, (Y_{CN})_2P^tBu \cdot AuCI)$. The structures were solved using direct methods, refined with the Shelx software package^[8] and expanded using Fourier techniques. The crystals of all compounds were mounted in an inert oil (perfluoropolyalkylether). Crystal structure determinations were affected at 100 K. Crystallographic data (including structure factors) have been deposited with the Cambridge Crystallographic Data Centre as supplementary publication no. CCDC-1943517-1943526. Copies of the data can be obtained free of charge on application to Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; [fax: (+44) 1223-336-033; email: deposit@ccdc.cam.ac.uk].

Details on the structure solutions

The structure of $(Y_{CN})_2 PCy$ contained a $CH_2 Cl_2$ solvent molecules disordered over two sites. The occupancy of the two sites was 0.81:0.19.

The structure of $(Y_{CN})_3 P$ contained a highly disordered solvent molecule that was treated by using the PLATON/SQUEZZE routine.^[8]

The structure of $(Y_{CN})_2$ PPh·AuCl contained a CH₂Cl₂ solvent molecules disordered over two sites. This was modelled using the SADI instruction. The occupancy of the two sites was 0.66:0.34.

The structure of (Y_{CN})₂PCy·Rh(CO)(acac) contained a CHCl₃ solvent molecules disordered over two sites. This was modelled using the RIGU instruction. The occupancy of the two sites was 0.86:0.14.

Compound	Y _{CN} P ^t Bu ₂	(Y _{CN}) ₂ PPh	(Y _{CN}) ₂ PCy
CCDC No.	1943525	1943520	1943518
Formula	$C_{62}H_{72}N_2P_4$	$C_{47}H_{37}CI_2N_2P_3\\$	$C_{97}H_{92}CI_{10}N_4P_6$
Formula weight [g⋅mol ⁻¹]	969.09	793.59	1854.06
Temperature [K]	100(2)	100(2)	100(2)
Wave length [Å]	1.54184	1.54184	1.54184
Crystal system	Triclinic	Monoclinic	Triclinic
Space group	<i>P</i> -1	P 2 ₁	<i>P</i> -1
a [Å]	10.1896(2)	10.3342(2)	10.2673(11)
b [Å]	17.4204(4)	22.3144(11)	12.110(2)
c [Å]	17.4304(4)	17.0157(3)	19.820(2)
α [°]	67.712(2)	90	103.947(12)
β [°]	73.191(2)	92.007(2)	99.881(9)
γ [°]	73.1212(19)	90	100.687(11)
Volume [Å ³]	2682.91(11)	3921.4(2)	2289.0(5)
Z	2	4	1
Calc. density [Mg⋅m ⁻³]	1.200	1.344	1.345

Table S6. Data collection and structure refinement details for the compounds Y_{CN}P^tBu₂, (Y_{CN})₂PPh and (Y_{CN})₂PCy.

μ [mm ⁻¹]	1.602	2.929	4.157
F(000)	1036	1648	962
Crystal dimensions [mm]	0.354 x 0.084 x 0.047	0.237 x 0.169 x 0.060	0.143 x 0.103 x 0.031
Theta range [°]	4.555 to 72.125	3.268 to 70.999	3.872 to 69.976
Index ranges	–12 ≤ h ≤ 12	–11 ≤ h ≤ 12	–12 ≤ h ≤ 9
	–21 ≤ k ≤ 21	–27 ≤ k ≤ 27	–13 ≤ k ≤ 14
	–21 ≤ l ≤ 21	–15 ≤ I ≤ 20	–23 ≤ I ≤ 24
Reflections collected	50208	33692	15578
Independent reflections	10570 [<i>R</i> _{int} = 0.0606]	15150 [$R_{int} = 0.0270$]	8610 [<i>R</i> _{int} = 0.0267]
Data/Restraints/Parameter	10570 / 0 / 627	15150 / 1 / 974	8610 / 0 / 560
Goodness-of-fit on F ²	1.048	1.024	1.033
Final R indices [I>2sigma(I)]	<i>R</i> 1 = 0.0393 w <i>R</i> 2 = 0.1022	R1 = 0.0309 wR2 = 0.0796	<i>R</i> 1 = 0.0366 w <i>R</i> 2 = 0.0913
R indices (all data)	<i>R</i> 1 = 0.0411 w <i>R</i> 2 = 0.1038	<i>R</i> 1 = 0.0325 w <i>R</i> 2 = 0.0806	<i>R</i> 1 = 0.0452 w <i>R</i> 2 = 0.0966
Largest diff. peak and hole [e⋅Å ^{–3}]	0.685 and -0.310	0.560 and -0.466	0.717 and -0.586

Table S7. Data collection and structure refinement details for the compounds $(Y_{CN})_3P$, $(Y_{CN})_2P^tBu \cdot AuCI$ and $(Y_{CN})_2PCy \cdot Rh(CO)(acac)$.

Compound	(Ycn)₂P⁺Bu	(Үсм)зР	(Y _{CN}) ₂ PCy·Rh(CO)(acac)
CCDC No.	1943522	1943523	1943526
Formula	$C_{45}H_{41}CI_2N_2P_3\\$	$C_{252}H_{204}N_{12}O_3P_{16}$	$C_{55}H_{51}Cl_9N_2O_3P_3Rh$
Formula weight [g⋅mol ⁻¹]	773.61	3943.78	1302.84
Temperature [K]	100(2)	100(2)	100(2)
Wave length [Å]	1.54184	1.54184	1.54184
Crystal system	Monoclinic	Trigonal	Monoclinic
Space group	<i>P</i> 2 ₁ /n	<i>P</i> -3	<i>P</i> 2 ₁ /c
a [Å]	9.8538(3)	35.1836(7)	11.00739(5)
b [Å]	22.9455(7)	35.1836(7)	22.02102(12)
c [Å]	17.3019(6)	9.7068(2)	24.05162(13)
α [°]	90	90	90
β [°]	93.031(3)	90	102.9893(5)
γ [°]	90	120	90
Volume [Å ³]	3906.5(2)	10406.1(5)	5680.79(5)
Z	4	2	4
Calc. density [Mg⋅m ⁻³]	1.315	1.259	1.5233
μ [mm ⁻¹]	2.922	1.689	7.487
F(000)	1616	4128	2648
Crystal dimensions [mm]	0.385 x 0.068 x 0.037	0.368 x 0.092 x 0.041	0.288 x 0.142 x 0.077
Theta range [°]	3.853 to 74.992	3.838 to 69.968	2.753 to 74.997
Index ranges	–12 ≤ h ≤ 11	–34 ≤ h ≤ 42	-12 ≤ h ≤ 13
	–28 ≤ k ≤ 28	–38 ≤ k ≤ 30	–25 ≤ k ≤ 27

	–18 ≤ l ≤ 21	–11 ≤ I ≤ 9	–29 ≤ I ≤ 30
Reflections collected	18240	24302	51112
Independent reflections	7986 [<i>R</i> _{int} = 0.0495]	13078 [<i>R</i> _{int} = 0.0402]	11595 [<i>R</i> _{int} = 0.0271]
Data/Restraints/Parameter	7986 / 0 / 472	13078 / 242 / 944	11595 / 0 / 692
Goodness-of-fit on F ²	1.014	1.007	1.042
Final R indices [I>2sigma(I)]	R1 = 0.0434 w $R2 = 0.1004$	R1 = 0.0428 wR2 = 0.1037	R1 = 0.0295 wR2 = 0.0766
R indices (all data)	<i>R</i> 1 = 0.0644 w <i>R</i> 2 = 0.1130	<i>R</i> 1 = 0.0507 w <i>R</i> 2 = 0.1076	R1 = 0.0305 wR2 = 0.0772
Largest diff. peak and hole [e·Å ⁻³]	0.474 and -0.419	0.402 and -0.306	0.858 and -0.789

Table S 8. Data collection and structure refinement details for the compounds Y_{CN}P^tBu₂·AuCl, (Y_{CN})₂PPh·AuCl and (Y_{CN})₂PCy·AuCl.

Compound	Y _{CN} P ^t Bu₂·AuCl	(Y _{CN})₂PPh·AuCl	(Y _{CN})₂PCy·AuCl
CCDC No.	1943524	1943519	1943517
Formula	C ₂₈ H ₃₃ AuCINP ₂	C47H37AuCl3N2P3	$C_{46}H_{41}AuCI_1N_2P_3$
Formula weight [g·mol ⁻¹]	677.91	1026.01	947.13
Temperature [K]	100(2)	100(2)	100(2)
Wave length [Å]	1.54184	1.54184	1.54184
Crystal system	Monoclinic	Triclinic	Monoclinic
Space group	P21/c	<i>P</i> -1	<i>P</i> 2 ₁ /n
a [Å]	11.78322(18)	12.5994(8)	17.5516(7)
b [Å]	9.40736(13)	13.2954(8)	12.9246(2)
c [Å]	24.6670(4)	13.5256(8)	17.7238(7)
α [°]	90	70.090(5)	90
β [°]	102.4825(16)	93.8160(10)	93.431(4)
γ [°]	90	78.391(5)	90
Volume [Å ³]	2669.68(7)	2085.9(2)	4013.4(2)
Z	4	2	4
Calc. density [Mg⋅m ⁻³]	1.687	1.634	1.567
μ [mm ⁻¹]	12.528	9.766	8.899
F(000)	1336	1016	1888
Crystal dimensions [mm]	0.211 x 0.150 x 0.072	0.332 x 0.255 x 0.215	0.277 x 0.084 x 0.031
Theta range [°]	3.671 to 74.957	3.477 bis 74.558	3.442 to 71.999
Index ranges	-14 ≤ h ≤ 12	–15 ≤ h ≤ 15	–21 ≤ h ≤ 20
	-11 ≤ k ≤ 11	–16 ≤ k ≤ 15	–13 ≤ k ≤ 15
	-30 ≤ I ≤ 30	–16 ≤ l ≤ 16	–21 ≤ I ≤ 21
Reflections collected	21894	15135	16094
Independent reflections	5471 [<i>R</i> _{int} = 0.0309]	8272 [<i>R</i> _{int} = 0.0203]	7808 [<i>R</i> _{int} = 0.0287]
Data/Restraints/Parameter	5471 / 0 / 304	8272 / 7 / 533	7808 / 0 / 478
Goodness-of-fit on F^2	1.061	1.110	1.034

Final R indices [I>2sigma(I)]	<i>R</i> 1 = 0.0216,	<i>R</i> 1 = 0.0231	R1 = 0.0294
	w <i>R</i> 2 = 0.0551	w <i>R</i> 2 = 0.0585	wR2 = 0.0740
R indices (all data)	<i>R</i> 1 = 0.0234,	<i>R</i> 1 = 0.0255	<i>R</i> 1 = 0.0347
	w <i>R</i> 2 = 0.0564	w <i>R</i> 2 = 0.0593	w <i>R</i> 2 = 0.0784
Largest diff. peak and hole [e⋅Å ^{−3}]	0.851 and -1.017	0.774 and -1.501	1.368 and –1.007

Table S9. Data collection and structure refinement details for (Y_{CN})₂P^tBu·AuCl.

Compound	(Y _{CN})₂P ^t Bu·AuCl
CCDC No.	1943521
Formula	C44H39AuCIN2P3
Formula weight [g⋅mol ⁻¹]	921.10
Temperature [K]	100(2)
Wave length [Å]	1.54184
Crystal system	Monoclinic
Space group	P21/n
a [Å]	10.8276(2)
b [Å]	33.9018(4)
c [Å]	11.4594(2)
α [°]	90
β [°]	113.030(2)
γ [°]	90
Volume [Å ³]	3871.21(12)
Z	4
Calc. density [Mg⋅m ⁻³]	1.580
μ [mm ⁻¹]	9.207
F(000)	1832
Crystal dimensions [mm]	0.488 x 0.094 x 0.044
Theta range [°]	4.391 to 74.977
Index ranges	-13 ≤ h ≤ 13
	-41 ≤ k ≤ 42
	-14 ≤ I ≤ 14
Reflections collected	31090
Independent reflections	7947 [<i>R</i> _{int} = 0.0291]
Data/Restraints/Parameter	7947 / 0 / 463
Goodness-of-fit on F ²	1.119
Final R indices [I>2sigma(I)]	R1 = 0.0279, wR2 = 0.0619
R indices (all data)	R1 = 0.0299, wR2 = 0.0627
Largest diff. peak and hole [e⋅Å ^{−3}]	0.789 and -1.209

3.2 Crystal structures of Y_{CN}Phos ligands

3.2.1 Crystal Structure Determination of Y_{CN}P^tBu₂

Figure S41 ORTEP Plot of $Y_{CN}P^tBu_2$. Ellipsoids are drawn at the 50% probability level.

Table S10. Atomic coordinates (x 10 ⁴) and equivalent isotropic displacement parameters (Å ² x 10 ³) for Y _{CN} P ^t Bu ₂
U(eq) is defined as one third of the trace of the orthogonalized U ^{ij} tensor.

	х	У	Z	U(eq)
P(1)	4571(1)	1942(1)	2620(1)	21(1)
P(2)	2018(1)	3280(1)	2079(1)	18(1)
P(3)	501(1)	2527(1)	8114(1)	18(1)
P(4)	3152(1)	2819(1)	6767(1)	19(1)
N(1)	4698(2)	4297(1)	2081(1)	35(1)
N(2)	842(3)	2076(2)	6045(2)	60(1)
C(1)	3663(2)	3043(1)	2280(1)	20(1)
C(2)	4210(2)	3733(1)	2178(1)	24(1)
C(3)	1730(2)	2501(1)	1723(1)	20(1)
C(4)	1391(2)	1737(1)	2297(1)	25(1)
C(5)	1169(2)	1156(1)	2006(2)	28(1)
C(6)	1289(2)	1330(1)	1143(2)	29(1)
C(7)	1629(2)	2084(1)	574(1)	28(1)
C(8)	1855(2)	2668(1)	859(1)	25(1)
C(9)	607(2)	3358(1)	2982(1)	22(1)

C(10)	855(3)	3602(2)	3588(2)	36(1)
C(11)	-177(3)	3676(2)	4287(2)	50(1)
C(12)	-1467(3)	3501(2)	4385(2)	47(1)
C(13)	-1727(3)	3273(2)	3783(2)	46(1)
C(14)	-700(2)	3204(2)	3070(2)	34(1)
C(15)	1710(2)	4299(1)	1263(1)	20(1)
C(16)	391(2)	4834(1)	1289(1)	24(1)
C(17)	154(2)	5581(1)	635(2)	29(1)
C(18)	1221(3)	5804(1)	-53(1)	30(1)
C(19)	2543(2)	5282(1)	-86(1)	28(1)
C(20)	2795(2)	4533(1)	575(1)	24(1)
C(21)	6371(2)	1956(2)	1908(2)	32(1)
C(22)	7352(3)	2378(2)	2085(2)	40(1)
C(23)	6142(3)	2434(2)	1007(2)	43(1)
C(24)	7107(3)	1033(2)	1974(2)	40(1)
C(25)	4707(2)	1721(2)	3750(1)	31(1)
C(26)	4917(3)	2444(2)	3949(2)	45(1)
C(27)	3278(3)	1499(2)	4277(2)	41(1)
C(28)	5829(3)	930(2)	4027(2)	40(1)
C(29)	1556(2)	2531(1)	7082(1)	25(1)
C(30)	1185(3)	2280(2)	6509(2)	38(1)
C(31)	3401(2)	3267(1)	7478(1)	21(1)
C(32)	3144(2)	4145(1)	7294(1)	24(1)
C(33)	3429(2)	4478(2)	7822(2)	29(1)
C(34)	3945(2)	3940(2)	8537(2)	30(1)
C(35)	4167(2)	3068(2)	8737(1)	28(1)
C(36)	3907(2)	2729(1)	8204(1)	25(1)
C(37)	3336(2)	3607(1)	5717(1)	23(1)
C(38)	2191(3)	4070(3)	5391(2)	71(1)
C(39)	2304(3)	4687(3)	4592(2)	72(1)
C(40)	3557(3)	4832(2)	4120(2)	37(1)
C(41)	4691(4)	4377(3)	4446(3)	90(2)
C(42)	4596(3)	3755(2)	5231(2)	81(2)
C(43)	4673(2)	1969(1)	6698(1)	23(1)
C(44)	4506(2)	1206(2)	6691(2)	30(1)
C(45)	5673(3)	563(2)	6607(2)	36(1)
C(46)	7003(3)	688(2)	6503(2)	33(1)
C(47)	7176(2)	1441(2)	6519(2)	32(1)
C(48)	6009(2)	2077(1)	6628(2)	29(1)
C(49)	349(2)	1382(1)	8682(1)	25(1)
C(50)	-26(3)	916(2)	8215(2)	42(1)
C(51)	-690(3)	1327(2)	9526(2)	40(1)
C(52)	1811(2)	933(1)	8874(1)	28(1)
C(53)	-1258(2)	3209(1)	7893(1)	25(1)
C(54)	-2072(3)	2929(2)	7468(2)	40(1)
C(55)	-934(3)	4083(1)	7339(2)	36(1)
C(56)	-2206(2)	3317(2)	8722(2)	34(1)
C11	633(3)	9316(2)	5590(2)	44(1)
C21	-66(3)	9177(2)	5094(2)	42(1)
C31	-700(3)	9873(2)	4503(2)	43(1)

C12	5521(4)	658(3)	9922(5)	101(2)	
C22	5779(4)	404(4)	9242(4)	101(2)	
C32	5235(4)	-254(4)	9303(4)	95(2)	

Table S11. Anisotropic displacement parameters (Å² x 10³) for $Y_{CN}P^{t}Bu_{2}$. The anisotropic displacement factor exponent takes the form: $-2\pi^{2} [h^{2}a^{.2}U^{11} + ... + 2 h k a \cdot b \cdot U^{12}]$.

	L 111	122	1122	1123	1113	1 12
D(1)	10(4)	10(1)	0	4(4)	C(4)	C(4)
P(1)	18(1)	19(1)	25(1)	-4(1)	-6(1)	-6(1)
P(2)	16(1)	10(1)	19(1)	-3(1)	-4(1)	-6(1)
P(3)	18(1)	19(1)	19(1)	-3(1)	-4(1)	-7(1)
P(4)	20(1)	21(1)	18(1)	-5(1)	-1(1)	-11(1)
N(1)	36(1)	29(1)	45(1)	-10(1)	-10(1)	-16(1)
N(2)	53(2)	110(2)	44(1)	-48(2)	8(1)	-47(2)
C(1)	18(1)	18(1)	24(1)	-5(1)	-4(1)	-6(1)
C(2)	20(1)	26(1)	25(1)	-7(1)	-7(1)	-6(1)
C(3)	16(1)	21(1)	24(1)	-4(1)	-6(1)	-6(1)
C(4)	27(1)	24(1)	25(1)	-2(1)	-9(1)	-10(1)
C(5)	31(1)	22(1)	32(1)	0(1)	-11(1)	-14(1)
C(6)	29(1)	27(1)	37(1)	-11(1)	-11(1)	-10(1)
C(7)	32(1)	30(1)	25(1)	-9(1)	-6(1)	-11(1)
C(8)	28(1)	21(1)	25(1)	-4(1)	-5(1)	-9(1)
C(9)	20(1)	19(1)	23(1)	-2(1)	-4(1)	-3(1)
C(10)	25(1)	52(2)	33(1)	-20(1)	-8(1)	-1(1)
C(11)	38(2)	77(2)	35(1)	-29(1)	-7(1)	2(1)
C(12)	34(1)	59(2)	33(1)	-15(1)	5(1)	-1(1)
C(13)	25(1)	55(2)	56(2)	-23(1)	9(1)	-16(1)
C(14)	24(1)	40(1)	42(1)	-18(1)	0(1)	-12(1)
C(15)	24(1)	17(1)	22(1)	-4(1)	-6(1)	-7(1)
C(16)	22(1)	23(1)	27(1)	-6(1)	-6(1)	-6(1)
C(17)	27(1)	26(1)	33(1)	-5(1)	-11(1)	-3(1)
C(18)	41(1)	21(1)	28(1)	0(1)	-12(1)	-9(1)
C(19)	36(1)	23(1)	23(1)	-4(1)	-2(1)	-14(1)
C(20)	24(1)	22(1)	25(1)	-7(1)	-4(1)	-7(1)
C(21)	25(1)	28(1)	30(1)	-1(1)	1(1)	-2(1)
C(22)	24(1)	38(1)	50(2)	-5(1)	-3(1)	-10(1)
C(23)	40(1)	44(1)	32(1)	-11(1)	1(1)	1(1)
C(24)	28(1)	34(1)	48(1)	-14(1)	-1(1)	1(1)
C(25)	30(1)	35(1)	24(1)	-2(1)	-10(1)	-6(1)
C(26)	51(2)	52(2)	36(1)	-13(1)	-18(1)	-11(1)
C(27)	34(1)	43(1)	34(1)	-1(1)	-2(1)	-7(1)
C(28)	35(1)	43(1)	34(1)	1(1)	-16(1)	-4(1)
C(29)	23(1)	33(1)	22(1)	-10(1)	1(1)	-15(1)
C(30)	29(1)	61(2)	33(1)	-23(1)	5(1)	-26(1)
C(31)	18(1)	26(1)	22(1)	-7(1)	1(1)	-13(1)
C(32)	18(1)	26(1)	28(1)	-9(1)	0(1)	-10(1)
C(33)	24(1)	30(1)	37(1)	-17(1)	2(1)	-12(1)
C(34)	24(1)	42(1)	35(1)	-24(1)	2(1)	-14(1)
C(35)	23(1)	42(1)	24(1)	-12(1)	-2(1)	-14(1)
C(36)	26(1)	26(1)	24(1)	-7(1)	-1(1)	-13(1)

C(37)	27(1)	21(1)	21(1)	-6(1)	-2(1)	-9(1)
C(38)	28(1)	116(3)	28(1)	24(2)	-6(1)	-19(2)
C(39)	39(2)	113(3)	30(1)	22(2)	-15(1)	-16(2)
C(40)	45(1)	29(1)	26(1)	1(1)	0(1)	-10(1)
C(41)	35(2)	80(3)	71(2)	47(2)	7(2)	-7(2)
C(42)	25(1)	69(2)	76(2)	45(2)	-2(1)	-4(1)
C(43)	25(1)	23(1)	20(1)	-5(1)	-4(1)	-8(1)
C(44)	30(1)	28(1)	34(1)	-12(1)	0(1)	-13(1)
C(45)	39(1)	27(1)	41(1)	-14(1)	-1(1)	-10(1)
C(46)	34(1)	27(1)	32(1)	-8(1)	-6(1)	1(1)
C(47)	24(1)	37(1)	37(1)	-11(1)	-11(1)	-4(1)
C(48)	28(1)	27(1)	34(1)	-9(1)	-12(1)	-7(1)
C(49)	22(1)	18(1)	30(1)	-2(1)	-4(1)	-7(1)
C(50)	47(2)	23(1)	63(2)	-8(1)	-28(1)	-10(1)
C(51)	32(1)	30(1)	37(1)	5(1)	4(1)	-6(1)
C(52)	24(1)	24(1)	31(1)	-2(1)	-4(1)	-6(1)
C(53)	24(1)	21(1)	31(1)	-6(1)	-11(1)	-5(1)
C(54)	36(1)	36(1)	58(2)	-19(1)	-29(1)	2(1)
C(55)	40(1)	22(1)	37(1)	-1(1)	-10(1)	-4(1)
C(56)	22(1)	36(1)	40(1)	-10(1)	-4(1)	-3(1)
C11	25(1)	48(2)	40(1)	8(1)	-8(1)	-9(1)
C21	25(1)	42(1)	49(2)	-3(1)	-5(1)	-10(1)
C31	26(1)	57(2)	41(1)	-5(1)	-6(1)	-15(1)
C12	32(2)	55(2)	186(6)	-5(3)	-30(3)	-5(2)
C22	31(2)	82(3)	116(4)	36(3)	-7(2)	-2(2)
C32	34(2)	117(4)	108(4)	-20(3)	-28(2)	11(2)

3.2.2 Crystal Structure Determination of $(Y_{CN})_2$ PPh

Figure S42 ORTEP Plot of $(Y_{CN})_2$ PPh. Ellipsoids are drawn at the 50% probability level.

	х	У	Z	U(eq)
P(1A)	481(1)	4023(1)	6740(1)	12(1)
P(2A)	2065(1)	5082(1)	7238(1)	11(1)
P(3A)	811(1)	3589(1)	5063(1)	11(1)
N(1A)	-1185(2)	5542(1)	6408(1)	18(1)
N(2A)	-2388(2)	4266(1)	5244(2)	22(1)
C(1A)	561(3)	4819(1)	6940(2)	14(1)
C(2A)	-387(3)	5221(1)	6648(2)	14(1)
C(3A)	1923(3)	5813(1)	7681(2)	15(1)
C(4A)	796(3)	5960(1)	8068(2)	20(1)
C(5A)	669(3)	6524(2)	8399(2)	27(1)
C(6A)	1662(3)	6937(1)	8355(2)	27(1)
C(7A)	2802(3)	6788(1)	7997(2)	25(1)
C(8A)	2936(3)	6228(1)	7658(2)	21(1)
C(9A)	2841(3)	4592(1)	7955(2)	14(1)
C(10A)	2801(3)	4728(1)	8754(2)	17(1)
C(11A)	3378(3)	4345(2)	9308(2)	22(1)
C(12A)	4005(3)	3830(1)	9064(2)	25(1)
C(13A)	4054(3)	3697(1)	8266(2)	22(1)
C(14A)	3471(3)	4071(1)	7712(2)	17(1)
C(15A)	3196(3)	5163(1)	6450(2)	14(1)
C(16A)	4534(3)	5095(1)	6575(2)	18(1)

Table S12. Atomic coordinates ($x \ 10^4$) and equivalent isotropic displacement parameters (Å²x 10³) for (Y_{CN})₂PPh. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

C(17A)	5357(3)	5162(1)	5952(2)	23(1)
C(18A)	4847(3)	5302(2)	5214(2)	27(1)
C(19A)	3525(3)	5374(2)	5087(2)	26(1)
C(20A)	2694(3)	5302(1)	5705(2)	20(1)
C(21A)	-139(3)	3917(1)	5753(2)	14(1)
C(22A)	-1374(3)	4113(1)	5480(2)	16(1)
C(23A)	131(3)	2897(1)	4663(2)	15(1)
C(24A)	862(3)	2524(1)	4185(2)	22(1)
C(25A)	320(4)	2000(2)	3874(2)	27(1)
C(26A)	-930(4)	1840(1)	4051(2)	28(1)
C(27A)	-1645(3)	2199(2)	4531(2)	25(1)
C(28A)	-1130(3)	2729(1)	4838(2)	19(1)
C(29A)	2379(3)	3394(1)	5488(2)	15(1)
C(30A)	2454(3)	2911(1)	6004(2)	19(1)
C(31A)	3646(3)	2746(1)	6345(2)	26(1)
C(32A)	4756(3)	3059(2)	6160(2)	28(1)
C(33A)	4684(3)	3543(2)	5654(2)	25(1)
C(34A)	3490(3)	3716(1)	5314(2)	19(1)
C(35A)	1109(3)	4078(1)	4239(2)	15(1)
C(36A)	662(3)	4667(1)	4259(2)	17(1)
C(37A)	1017(3)	5071(1)	3681(2)	22(1)
C(38A)	1827(3)	4893(2)	3094(2)	23(1)
C(39A)	2235(3)	4305(2)	3056(2)	25(1)
C(40A)	1873(3)	3897(1)	3622(2)	23(1)
C(41A)	-855(3)	3764(1)	7337(2)	15(1)
C(42A)	-1592(3)	3262(1)	7108(2)	19(1)
C(43A)	-2473(3)	3008(1)	7608(2)	20(1)
C(44A)	-2622(3)	3245(1)	8352(2)	23(1)
C(45A)	-1888(4)	3735(2)	8592(2)	28(1)
C(46A)	-1007(3)	3991(1)	8088(2)	24(1)
P(1B)	5383(1)	6127(1)	1704(1)	11(1)
P(2B)	5793(1)	6608(1)	68(1)	12(1)
P(3B)	7017(1)	5082(1)	2214(1)	12(1)
N(1B)	2671(2)	5856(1)	78(2)	21(1)
N(2B)	3741(2)	4605(1)	1389(2)	18(1)
C(1B)	4809(3)	6243(1)	710(2)	14(1)
C(2B)	3636(3)	6023(1)	369(2)	15(1)
C(3B)	5049(3)	7289(1)	-327(2)	17(1)
C(4B)	3803(3)	7438(1)	-119(2)	20(1)
C(5B)	3232(3)	7967(2)	-403(2)	26(1)
C(6B)	3912(4)	8338(2)	-896(2)	31(1)
C(7B)	5159(4)	8194(2)	-1098(2)	33(1)
C(8B)	5733(4)	7673(1)	-815(2)	25(1)
C(9B)	6203(3)	6134(1)	-757(2)	15(1)
C(10B)	7013(3)	6338(1)	-1343(2)	20(1)
C(11B)	7367(3)	5952(2)	-1940(2)	22(1)
C(12B)	6935(3)	5364(2)	-1955(2)	22(1)
C(13B)	6117(3)	5164(1)	-1386(2)	22(1)
C(14B)	5751(3)	5547(1)	-784(2)	17(1)
C(15B)	7296(3)	6847(1)	542(2)	16(1)
· /	· · /	· · /	× /	. /

C(17B) 8397(4) 7545(2) 1421(2) 29(1) C(18B) 9570(3) 7272(2) 1267(2) 30(1) C(19B) 9608(3) 6786(2) 766(2) 28(1) C(20B) 8474(3) 6568(1) 402(2) 21(1) C(21B) 5526(3) 5329(1) 1876(2) 14(1) C(22B) 4572(3) 4926(1) 1613(2) 14(1) C(24B) 7789(3) 4964(1) 682(2) 18(1) C(24B) 7789(3) 4964(1) 682(2) 22(1) C(26B) 9988(3) 5043(1) 263(2) 24(1) C(27B) 10416(3) 5135(1) 1038(2) 22(1) C(28B) 9537(3) 5142(1) 1635(2) 18(1) C(29B) 6898(3) 4341(1) 2629(2) 16(1) C(30B) 7922(3) 3939(1) 2601(2) 21(1) C(33B) 5679(3) 3624(2) 3356(2) 26(1) C(34B) 5780(3) 4187	C(16B)	7262(3)	7337(1)	1056(2)	22(1)
C(18B) 9570(3) 7272(2) 1267(2) 30(1) C(19B) 9608(3) 6786(2) 766(2) 28(1) C(20B) 8474(3) 6568(1) 402(2) 21(1) C(21B) 5526(3) 5329(1) 1876(2) 14(1) C(22B) 4572(3) 4926(1) 1613(2) 14(1) C(23B) 8215(3) 5058(1) 1464(2) 15(1) C(24B) 7789(3) 4964(1) 682(2) 18(1) C(25B) 8683(3) 4954(1) 89(2) 22(1) C(26B) 9988(3) 5043(1) 263(2) 24(1) C(27B) 10416(3) 5135(1) 1038(2) 22(1) C(28B) 9537(3) 5142(1) 1635(2) 18(1) C(29B) 6898(3) 4341(1) 2629(2) 16(1) C(30B) 7922(3) 3939(1) 2601(2) 21(1) C(33B) 6679(3) 3564(2) 26(1) 26(1) C(34B) 7780(3) 4187(1)	C(17B)	8397(4)	7545(2)	1421(2)	29(1)
C(19B) 9608(3) 6786(2) 766(2) 28(1) C(20B) 8474(3) 6568(1) 402(2) 21(1) C(21B) 5526(3) 5329(1) 1876(2) 14(1) C(22B) 4572(3) 4926(1) 1613(2) 14(1) C(23B) 8215(3) 5058(1) 1464(2) 15(1) C(24B) 7789(3) 4964(1) 682(2) 18(1) C(26B) 9988(3) 5043(1) 263(2) 24(1) C(26B) 9988(3) 5043(1) 263(2) 24(1) C(27B) 10416(3) 5135(1) 1038(2) 22(1) C(28B) 9537(3) 5142(1) 1635(2) 18(1) C(28B) 9537(3) 5142(1) 1635(2) 29(1) C(30B) 7922(3) 3939(1) 2601(2) 29(1) C(31B) 780(3) 4187(1) 3017(2) 19(1) C(32B) 6693(4) 3216(2) 3311(2) 30(1) C(33B) 5780(3) 4187(C(18B)	9570(3)	7272(2)	1267(2)	30(1)
C(20B) 8474(3) 6568(1) 402(2) 21(1) C(21B) 5526(3) 5329(1) 1876(2) 14(1) C(22B) 4572(3) 4926(1) 1613(2) 14(1) C(22B) 8215(3) 5058(1) 1464(2) 15(1) C(24B) 7789(3) 4964(1) 682(2) 18(1) C(26B) 9988(3) 5043(1) 263(2) 24(1) C(26B) 9988(3) 5043(1) 263(2) 24(1) C(27B) 10446(3) 5135(1) 1038(2) 22(1) C(28B) 9537(3) 5142(1) 1635(2) 18(1) C(29B) 6898(3) 4341(1) 2629(2) 16(1) C(30B) 7922(3) 3939(1) 2601(2) 29(1) C(31B) 7809(3) 3375(2) 2946(2) 29(1) C(32B) 6693(4) 3216(2) 3311(2) 30(1) C(34B) 5780(3) 4187(1) 3017(2) 19(1) C(35B) 7689(3) 564	C(19B)	9608(3)	6786(2)	766(2)	28(1)
C(21B) 5526(3) 5329(1) 1876(2) 14(1) C(22B) 4572(3) 4926(1) 1613(2) 14(1) C(23B) 8215(3) 5058(1) 1464(2) 15(1) C(24B) 7789(3) 4964(1) 682(2) 18(1) C(25B) 8683(3) 4954(1) 89(2) 22(1) C(26B) 9988(3) 5043(1) 263(2) 24(1) C(27B) 10416(3) 5135(1) 1038(2) 22(1) C(28B) 9537(3) 5142(1) 1635(2) 18(1) C(28B) 9537(3) 5142(1) 1635(2) 29(1) C(30B) 7922(3) 3939(1) 2601(2) 21(1) C(31B) 7609(3) 3375(2) 2946(2) 29(1) C(32B) 6693(4) 3216(2) 3311(2) 30(1) C(33B) 5679(3) 3624(2) 3356(2) 26(1) C(34B) 7680(3) 5564(1) 2978(2) 14(1) C(35B) 7689(3) 533	C(20B)	8474(3)	6568(1)	402(2)	21(1)
C(22B) $4572(3)$ $4926(1)$ $1613(2)$ $14(1)$ $C(23B)$ $8215(3)$ $5058(1)$ $1464(2)$ $15(1)$ $C(24B)$ $7789(3)$ $4964(1)$ $682(2)$ $18(1)$ $C(25B)$ $8683(3)$ $4954(1)$ $89(2)$ $22(1)$ $C(26B)$ $9988(3)$ $5043(1)$ $263(2)$ $24(1)$ $C(27B)$ $10416(3)$ $5135(1)$ $1038(2)$ $22(1)$ $C(28B)$ $9537(3)$ $5142(1)$ $1635(2)$ $18(1)$ $C(29B)$ $6898(3)$ $4341(1)$ $2629(2)$ $16(1)$ $C(30B)$ $7922(3)$ $3939(1)$ $2601(2)$ $29(1)$ $C(31B)$ $7809(3)$ $3375(2)$ $2946(2)$ $29(1)$ $C(32B)$ $6693(4)$ $3216(2)$ $3311(2)$ $30(1)$ $C(33B)$ $5579(3)$ $3624(2)$ $3356(2)$ $26(1)$ $C(34B)$ $5780(3)$ $4187(1)$ $3017(2)$ $19(1)$ $C(35B)$ $7689(3)$ $5564(1)$ $2978(2)$ $14(1)$ $C(36B)$ $7652(3)$ $5391(1)$ $3767(2)$ $17(1)$ $C(37B)$ $8111(3)$ $5778(2)$ $4356(2)$ $21(1)$ $C(38B)$ $8609(3)$ $6331(1)$ $4157(2)$ $23(1)$ $C(38B)$ $8666(3)$ $6500(1)$ $3373(2)$ $20(1)$ $C(40B)$ $8210(3)$ $6120(1)$ $2781(2)$ $16(1)$ $C(41B)$ $4012(3)$ $6396(1)$ $3121(2)$ $20(1)$ $C(44B)$ $2107(3)$ $6485(1)$ $2079(2)$ $18(1)$ $C(44B)$ <td< td=""><td>C(21B)</td><td>5526(3)</td><td>5329(1)</td><td>1876(2)</td><td>14(1)</td></td<>	C(21B)	5526(3)	5329(1)	1876(2)	14(1)
C(23B) $8215(3)$ $5058(1)$ $1464(2)$ $15(1)$ $C(24B)$ $7789(3)$ $4964(1)$ $682(2)$ $18(1)$ $C(25B)$ $8683(3)$ $4954(1)$ $89(2)$ $22(1)$ $C(26B)$ $9988(3)$ $5043(1)$ $263(2)$ $24(1)$ $C(27B)$ $10416(3)$ $5135(1)$ $1038(2)$ $22(1)$ $C(28B)$ $9537(3)$ $5142(1)$ $1635(2)$ $18(1)$ $C(29B)$ $6898(3)$ $4341(1)$ $2629(2)$ $16(1)$ $C(30B)$ $7922(3)$ $3939(1)$ $2601(2)$ $21(1)$ $C(31B)$ $7809(3)$ $3375(2)$ $2946(2)$ $29(1)$ $C(32B)$ $6693(4)$ $3216(2)$ $3311(2)$ $30(1)$ $C(33B)$ $5679(3)$ $3624(2)$ $3356(2)$ $26(1)$ $C(34B)$ $5780(3)$ $4187(1)$ $3017(2)$ $19(1)$ $C(35B)$ $7689(3)$ $5564(1)$ $2978(2)$ $14(1)$ $C(36B)$ $7652(3)$ $5391(1)$ $3767(2)$ $17(1)$ $C(37B)$ $8111(3)$ $5778(2)$ $4356(2)$ $21(1)$ $C(38B)$ $8609(3)$ $6331(1)$ $4157(2)$ $23(1)$ $C(38B)$ $8666(3)$ $6500(1)$ $3373(2)$ $20(1)$ $C(40B)$ $8210(3)$ $6120(1)$ $2781(2)$ $16(1)$ $C(41B)$ $4012(3)$ $6339(1)$ $2322(2)$ $14(1)$ $C(44B)$ $2107(3)$ $6588(1)$ $3403(2)$ $20(1)$ $C(44B)$ $2107(3)$ $6588(1)$ $3403(2)$ $20(1)$ $C(44B)$ <td< td=""><td>C(22B)</td><td>4572(3)</td><td>4926(1)</td><td>1613(2)</td><td>14(1)</td></td<>	C(22B)	4572(3)	4926(1)	1613(2)	14(1)
C(24B)7789(3)4964(1)682(2)18(1) $C(25B)$ 8683(3)4954(1)89(2)22(1) $C(26B)$ 9988(3)5043(1)263(2)24(1) $C(27B)$ 10416(3)5135(1)1038(2)22(1) $C(28B)$ 9537(3)5142(1)1635(2)18(1) $C(29B)$ 6898(3)4341(1)2629(2)16(1) $C(30B)$ 7922(3)3939(1)2601(2)21(1) $C(31B)$ 7809(3)3375(2)2946(2)29(1) $C(32B)$ 6693(4)3216(2)3311(2)30(1) $C(33B)$ 5679(3)3624(2)3356(2)26(1) $C(34B)$ 5780(3)4187(1)3017(2)19(1) $C(35B)$ 7689(3)5564(1)2978(2)14(1) $C(36B)$ 7652(3)5391(1)3767(2)17(1) $C(37B)$ 8111(3)5778(2)4356(2)21(1) $C(38B)$ 8609(3)6331(1)4157(2)23(1) $C(38B)$ 8609(3)6331(1)373(2)20(1) $C(40B)$ 8210(3)6120(1)2781(2)16(1) $C(41B)$ 4012(3)6309(1)3222(2)14(1) $C(44B)$ 2107(3)6588(1)3403(2)20(1) $C(44B)$ 2107(3)6588(1)3403(2)20(1) $C(44B)$ 2711(3)6365(1)2079(2)18(1) $C(11)$ 3989(4)1652(2)3739(2)36(1) $C(11)$ 3990(1)2215(1)3011(1)39(1) $C(22)$ <td>C(23B)</td> <td>8215(3)</td> <td>5058(1)</td> <td>1464(2)</td> <td>15(1)</td>	C(23B)	8215(3)	5058(1)	1464(2)	15(1)
C(25B)8683(3)4954(1)89(2)22(1)C(26B)9988(3)5043(1)263(2)24(1)C(27B)10416(3)5135(1)1038(2)22(1)C(28B)9537(3)5142(1)1635(2)18(1)C(29B)6898(3)4341(1)2629(2)16(1)C(30B)7922(3)3939(1)2601(2)21(1)C(31B)7809(3)3375(2)2946(2)29(1)C(32B)6693(4)3216(2)3311(2)30(1)C(33B)5679(3)3624(2)3356(2)26(1)C(34B)5780(3)4187(1)3017(2)19(1)C(35B)7689(3)5564(1)2978(2)14(1)C(36B)7652(3)5391(1)3767(2)17(1)C(37B)8111(3)5778(2)4356(2)21(1)C(38B)8609(3)6331(1)4157(2)23(1)C(39B)8666(3)6500(1)3373(2)20(1)C(40B)8210(3)6120(1)2781(2)16(1)C(41B)4012(3)6309(1)2322(2)14(1)C(42B)4336(3)6396(1)3121(2)20(1)C(44B)2107(3)6588(1)3403(2)20(1)C(44B)2711(3)6365(1)2079(2)18(1)C113989(4)1652(2)3739(2)36(1)C113989(4)1652(2)3739(2)36(1)C113989(4)1652(2)3739(2)36(1)C1211085(4)3610(2)1172(2)39	C(24B)	7789(3)	4964(1)	682(2)	18(1)
C(26B)9988(3)5043(1)263(2)24(1)C(27B)10416(3)5135(1)1038(2)22(1)C(28B)9537(3)5142(1)1635(2)18(1)C(29B)6898(3)4341(1)2629(2)16(1)C(30B)7922(3)3939(1)2601(2)21(1)C(31B)7809(3)3375(2)2946(2)29(1)C(32B)6693(4)3216(2)3311(2)30(1)C(33B)5679(3)3624(2)3356(2)26(1)C(34B)5780(3)4187(1)3017(2)19(1)C(35B)7689(3)5564(1)2978(2)14(1)C(36B)7652(3)5391(1)3767(2)17(1)C(37B)8111(3)5778(2)4356(2)21(1)C(38B)8609(3)6331(1)4157(2)23(1)C(39B)8666(3)6500(1)3373(2)20(1)C(40B)8210(3)6120(1)2781(2)16(1)C(41B)4012(3)6309(1)2322(2)14(1)C(42B)4336(3)6396(1)3121(2)20(1)C(44B)2107(3)6588(1)3403(2)20(1)C(44B)2711(3)6365(1)2079(2)18(1)C113989(4)1652(2)3739(2)36(1)C113989(4)1652(2)3739(2)36(1)C113989(4)1652(2)3739(2)36(1)C113989(4)1652(2)3739(2)36(1)C1211085(4)3610(2)1172(2)39(C(25B)	8683(3)	4954(1)	89(2)	22(1)
C(27B)10416(3)5135(1)1038(2)22(1)C(28B)9537(3)5142(1)1635(2)18(1)C(29B)6898(3)4341(1)2629(2)16(1)C(30B)7922(3)3939(1)2601(2)21(1)C(31B)7809(3)3375(2)2946(2)29(1)C(32B)6693(4)3216(2)3311(2)30(1)C(33B)5679(3)3624(2)3356(2)26(1)C(34B)5780(3)4187(1)3017(2)19(1)C(35B)7689(3)5564(1)2978(2)14(1)C(36B)7652(3)5391(1)3767(2)17(1)C(37B)8111(3)5778(2)4356(2)21(1)C(38B)8609(3)6331(1)4157(2)23(1)C(39B)8666(3)6500(1)3373(2)20(1)C(40B)8210(3)6120(1)2781(2)16(1)C(41B)4012(3)6309(1)2322(2)14(1)C(42B)4336(3)6537(1)3653(2)22(1)C(44B)2107(3)6588(1)3403(2)20(1)C(44B)2107(3)6588(1)2019(2)18(1)C113989(4)1652(2)3739(2)36(1)C113989(4)1652(2)3739(2)36(1)C113989(4)1652(2)3739(2)36(1)C113989(4)1652(2)3739(2)36(1)C113989(4)1652(2)3739(2)36(1)C113021(1)177(1)3021(1)4674(1)	C(26B)	9988(3)	5043(1)	263(2)	24(1)
C(28B)9537(3)5142(1)1635(2)18(1)C(29B)6898(3)4341(1)2629(2)16(1)C(30B)7922(3)3939(1)2601(2)21(1)C(31B)7809(3)3375(2)2946(2)29(1)C(32B)6693(4)3216(2)3311(2)30(1)C(33B)5679(3)3624(2)3356(2)26(1)C(34B)5780(3)4187(1)3017(2)19(1)C(35B)7689(3)5564(1)2978(2)14(1)C(36B)7652(3)5391(1)3767(2)17(1)C(37B)8111(3)5778(2)4356(2)21(1)C(38B)8609(3)6331(1)4157(2)23(1)C(39B)8666(3)6500(1)3373(2)20(1)C(40B)8210(3)6120(1)2781(2)16(1)C(44B)4012(3)6309(1)2322(2)14(1)C(42B)4336(3)6537(1)3653(2)22(1)C(44B)2107(3)6588(1)3403(2)20(1)C(44B)2177(3)6495(1)2616(2)21(1)C(46B)2711(3)6365(1)2079(2)18(1)C113989(4)1652(2)3739(2)36(1)C113989(4)1652(2)3739(2)36(1)C1211085(4)3610(2)1172(2)39(1)C1211085(4)3610(2)1172(2)39(1)C1211200(1)3022(1)1868(1)43(1)	C(27B)	10416(3)	5135(1)	1038(2)	22(1)
C(29B)6898(3)4341(1)2629(2)16(1)C(30B)7922(3)3939(1)2601(2)21(1)C(31B)7809(3)3375(2)2946(2)29(1)C(32B)6693(4)3216(2)3311(2)30(1)C(33B)5679(3)3624(2)3356(2)26(1)C(34B)5780(3)4187(1)3017(2)19(1)C(35B)7689(3)5564(1)2978(2)14(1)C(36B)7652(3)5391(1)3767(2)17(1)C(37B)8111(3)5778(2)4356(2)21(1)C(38B)8609(3)6331(1)4157(2)23(1)C(39B)8666(3)6500(1)3373(2)20(1)C(40B)8210(3)6120(1)2781(2)16(1)C(44B)4012(3)6309(1)2322(2)14(1)C(44B)3393(3)6537(1)3653(2)22(1)C(44B)2107(3)6588(1)3403(2)20(1)C(45B)1773(3)6495(1)2616(2)21(1)C(45B)1773(3)6365(1)2079(2)18(1)C113989(4)1652(2)3739(2)36(1)C113989(4)1652(2)3739(2)36(1)C1211085(4)3610(2)1172(2)39(1)C1211085(4)3610(2)1172(2)39(1)C1211200(1)3022(1)1868(1)43(1)	C(28B)	9537(3)	5142(1)	1635(2)	18(1)
C(30B)7922(3)3939(1)2601(2)21(1)C(31B)7809(3)3375(2)2946(2)29(1)C(32B)6693(4)3216(2)3311(2)30(1)C(33B)5679(3)3624(2)3356(2)26(1)C(34B)5780(3)4187(1)3017(2)19(1)C(35B)7689(3)5564(1)2978(2)14(1)C(36B)7652(3)5391(1)3767(2)17(1)C(37B)8111(3)5778(2)4356(2)21(1)C(38B)8609(3)6331(1)4157(2)23(1)C(39B)8666(3)6500(1)3373(2)20(1)C(40B)8210(3)6120(1)2781(2)16(1)C(44B)4012(3)6309(1)2322(2)14(1)C(42B)4336(3)6537(1)3653(2)22(1)C(44B)2107(3)6588(1)3403(2)20(1)C(45B)1773(3)6495(1)2616(2)21(1)C(46B)2711(3)6365(1)2079(2)18(1)C113989(4)1652(2)3739(2)36(1)C1211085(4)3610(2)1172(2)39(1)C1211085(4)3610(2)1172(2)39(1)C1211200(1)3022(1)1868(1)43(1)	C(29B)	6898(3)	4341(1)	2629(2)	16(1)
C(31B)7809(3)3375(2)2946(2)29(1)C(32B)6693(4)3216(2)3311(2)30(1)C(33B)5679(3)3624(2)3356(2)26(1)C(34B)5780(3)4187(1)3017(2)19(1)C(35B)7689(3)5564(1)2978(2)14(1)C(36B)7652(3)5391(1)3767(2)17(1)C(37B)8111(3)5778(2)4356(2)21(1)C(38B)8609(3)6331(1)4157(2)23(1)C(39B)8666(3)6500(1)3373(2)20(1)C(40B)8210(3)6120(1)2781(2)16(1)C(42B)4336(3)6396(1)3121(2)20(1)C(42B)4336(3)6537(1)3653(2)22(1)C(44B)2107(3)6588(1)3403(2)20(1)C(45B)1773(3)6495(1)2616(2)21(1)C(46B)2711(3)6365(1)2079(2)18(1)C113989(4)1652(2)3739(2)36(1)C1211085(4)3610(2)1172(2)39(1)C1210728(1)3332(1)226(1)54(1)C12211200(1)3022(1)1868(1)43(1)	C(30B)	7922(3)	3939(1)	2601(2)	21(1)
C(32B)6693(4)3216(2)3311(2)30(1)C(33B)5679(3)3624(2)3356(2)26(1)C(34B)5780(3)4187(1)3017(2)19(1)C(35B)7689(3)5564(1)2978(2)14(1)C(36B)7652(3)5391(1)3767(2)17(1)C(37B)8111(3)5778(2)4356(2)21(1)C(38B)8609(3)6331(1)4157(2)23(1)C(39B)8666(3)6500(1)3373(2)20(1)C(40B)8210(3)6120(1)2781(2)16(1)C(41B)4012(3)6309(1)2322(2)14(1)C(42B)4336(3)6537(1)3653(2)22(1)C(43B)3393(3)6537(1)3653(2)22(1)C(44B)2107(3)6588(1)3403(2)20(1)C(45B)1773(3)6495(1)2616(2)21(1)C(46B)2711(3)6365(1)2079(2)18(1)C113989(4)1652(2)3739(2)36(1)C1113790(1)2215(1)3011(1)39(1)C1211085(4)3610(2)1172(2)39(1)C1211200(1)3022(1)1868(1)43(1)	C(31B)	7809(3)	3375(2)	2946(2)	29(1)
C(33B)5679(3)3624(2)3356(2)26(1)C(34B)5780(3)4187(1)3017(2)19(1)C(35B)7689(3)5564(1)2978(2)14(1)C(36B)7652(3)5391(1)3767(2)17(1)C(37B)8111(3)5778(2)4356(2)21(1)C(38B)8609(3)6331(1)4157(2)23(1)C(39B)8666(3)6500(1)3373(2)20(1)C(40B)8210(3)6120(1)2781(2)16(1)C(41B)4012(3)6309(1)2322(2)14(1)C(42B)4336(3)6396(1)3121(2)20(1)C(43B)3393(3)6537(1)3653(2)22(1)C(44B)2107(3)6588(1)3403(2)20(1)C(45B)1773(3)6495(1)2616(2)21(1)C(46B)2711(3)6365(1)2079(2)18(1)C113989(4)1652(2)3739(2)36(1)C1211085(4)3610(2)1172(2)39(1)C1210728(1)3332(1)226(1)54(1)C12211200(1)3022(1)1868(1)43(1)	C(32B)	6693(4)	3216(2)	3311(2)	30(1)
C(34B)5780(3)4187(1)3017(2)19(1)C(35B)7689(3)5564(1)2978(2)14(1)C(36B)7652(3)5391(1)3767(2)17(1)C(37B)8111(3)5778(2)4356(2)21(1)C(38B)8609(3)6331(1)4157(2)23(1)C(39B)8666(3)6500(1)3373(2)20(1)C(40B)8210(3)6120(1)2781(2)16(1)C(41B)4012(3)6309(1)2322(2)14(1)C(42B)4336(3)6396(1)3121(2)20(1)C(43B)3393(3)6537(1)3653(2)22(1)C(44B)2107(3)6588(1)3403(2)20(1)C(45B)1773(3)6495(1)2616(2)21(1)C(46B)2711(3)6365(1)2079(2)18(1)C113989(4)1652(2)3739(2)36(1)C1211085(4)3610(2)1172(2)39(1)C1211028(1)3332(1)226(1)54(1)C1211200(1)3022(1)1868(1)43(1)	C(33B)	5679(3)	3624(2)	3356(2)	26(1)
C(35B)7689(3)5564(1)2978(2)14(1)C(36B)7652(3)5391(1)3767(2)17(1)C(37B)8111(3)5778(2)4356(2)21(1)C(38B)8609(3)6331(1)4157(2)23(1)C(39B)8666(3)6500(1)3373(2)20(1)C(40B)8210(3)6120(1)2781(2)16(1)C(41B)4012(3)6309(1)2322(2)14(1)C(42B)4336(3)6396(1)3121(2)20(1)C(44B)2107(3)6588(1)3403(2)22(1)C(44B)2107(3)6588(1)2403(2)20(1)C(45B)1773(3)6495(1)2616(2)21(1)C(46B)2711(3)6365(1)2079(2)18(1)C113989(4)1652(2)3739(2)36(1)C1113790(1)2215(1)3011(1)39(1)C1211085(4)3610(2)1172(2)39(1)C1211200(1)3022(1)1868(1)43(1)	C(34B)	5780(3)	4187(1)	3017(2)	19(1)
C(36B)7652(3)5391(1)3767(2)17(1)C(37B)8111(3)5778(2)4356(2)21(1)C(38B)8609(3)6331(1)4157(2)23(1)C(39B)8666(3)6500(1)3373(2)20(1)C(40B)8210(3)6120(1)2781(2)16(1)C(41B)4012(3)6309(1)2322(2)14(1)C(42B)4336(3)6396(1)3121(2)20(1)C(43B)3393(3)6537(1)3653(2)22(1)C(44B)2107(3)6588(1)3403(2)20(1)C(45B)1773(3)6495(1)2616(2)21(1)C(46B)2711(3)6365(1)2079(2)18(1)C113989(4)1652(2)3739(2)36(1)C1214259(1)1976(1)4674(1)43(1)C1211085(4)3610(2)1172(2)39(1)C12211200(1)3022(1)1868(1)43(1)	C(35B)	7689(3)	5564(1)	2978(2)	14(1)
C(37B)8111(3)5778(2)4356(2)21(1)C(38B)8609(3)6331(1)4157(2)23(1)C(39B)8666(3)6500(1)3373(2)20(1)C(40B)8210(3)6120(1)2781(2)16(1)C(41B)4012(3)6309(1)2322(2)14(1)C(42B)4336(3)6396(1)3121(2)20(1)C(43B)3393(3)6537(1)3653(2)22(1)C(44B)2107(3)6588(1)3403(2)20(1)C(45B)1773(3)6495(1)2616(2)21(1)C(46B)2711(3)6365(1)2079(2)18(1)C113989(4)1652(2)3739(2)36(1)Cl113790(1)2215(1)3011(1)39(1)Cl214259(1)1976(1)4674(1)43(1)Cl2110728(1)3332(1)226(1)54(1)Cl2211200(1)3022(1)1868(1)43(1)	C(36B)	7652(3)	5391(1)	3767(2)	17(1)
C(38B)8609(3)6331(1)4157(2)23(1)C(39B)8666(3)6500(1)3373(2)20(1)C(40B)8210(3)6120(1)2781(2)16(1)C(41B)4012(3)6309(1)2322(2)14(1)C(42B)4336(3)6396(1)3121(2)20(1)C(43B)3393(3)6537(1)3653(2)22(1)C(44B)2107(3)6588(1)3403(2)20(1)C(45B)1773(3)6495(1)2616(2)21(1)C(46B)2711(3)6365(1)2079(2)18(1)C113989(4)1652(2)3739(2)36(1)Cl214259(1)1976(1)4674(1)43(1)C1211085(4)3610(2)1172(2)39(1)Cl2211200(1)3022(1)1868(1)43(1)	C(37B)	8111(3)	5778(2)	4356(2)	21(1)
C(39B)8666(3)6500(1)3373(2)20(1)C(40B)8210(3)6120(1)2781(2)16(1)C(41B)4012(3)6309(1)2322(2)14(1)C(42B)4336(3)6396(1)3121(2)20(1)C(43B)3393(3)6537(1)3653(2)22(1)C(44B)2107(3)6588(1)3403(2)20(1)C(45B)1773(3)6495(1)2616(2)21(1)C(46B)2711(3)6365(1)2079(2)18(1)C113989(4)1652(2)3739(2)36(1)Cl214259(1)1976(1)4674(1)43(1)C1211085(4)3610(2)1172(2)39(1)Cl2211200(1)3022(1)1868(1)43(1)	C(38B)	8609(3)	6331(1)	4157(2)	23(1)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	C(39B)	8666(3)	6500(1)	3373(2)	20(1)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	C(40B)	8210(3)	6120(1)	2781(2)	16(1)
C(42B)4336(3)6396(1)3121(2)20(1)C(43B)3393(3)6537(1)3653(2)22(1)C(44B)2107(3)6588(1)3403(2)20(1)C(45B)1773(3)6495(1)2616(2)21(1)C(46B)2711(3)6365(1)2079(2)18(1)C113989(4)1652(2)3739(2)36(1)Cl113790(1)2215(1)3011(1)39(1)Cl214259(1)1976(1)4674(1)43(1)C1211085(4)3610(2)1172(2)39(1)Cl2211200(1)3022(1)1868(1)43(1)	C(41B)	4012(3)	6309(1)	2322(2)	14(1)
C(43B)3393(3)6537(1)3653(2)22(1)C(44B)2107(3)6588(1)3403(2)20(1)C(45B)1773(3)6495(1)2616(2)21(1)C(46B)2711(3)6365(1)2079(2)18(1)C113989(4)1652(2)3739(2)36(1)Cl113790(1)2215(1)3011(1)39(1)Cl214259(1)1976(1)4674(1)43(1)C1211085(4)3610(2)1172(2)39(1)Cl2211200(1)3022(1)1868(1)43(1)	C(42B)	4336(3)	6396(1)	3121(2)	20(1)
C(44B)2107(3)6588(1)3403(2)20(1)C(45B)1773(3)6495(1)2616(2)21(1)C(46B)2711(3)6365(1)2079(2)18(1)C113989(4)1652(2)3739(2)36(1)Cl113790(1)2215(1)3011(1)39(1)Cl214259(1)1976(1)4674(1)43(1)C1211085(4)3610(2)1172(2)39(1)Cl2211200(1)3022(1)1868(1)43(1)	C(43B)	3393(3)	6537(1)	3653(2)	22(1)
C(45B)1773(3)6495(1)2616(2)21(1)C(46B)2711(3)6365(1)2079(2)18(1)C113989(4)1652(2)3739(2)36(1)Cl113790(1)2215(1)3011(1)39(1)Cl214259(1)1976(1)4674(1)43(1)C1211085(4)3610(2)1172(2)39(1)Cl1210728(1)3332(1)226(1)54(1)Cl2211200(1)3022(1)1868(1)43(1)	C(44B)	2107(3)	6588(1)	3403(2)	20(1)
C(46B)2711(3)6365(1)2079(2)18(1)C113989(4)1652(2)3739(2)36(1)Cl113790(1)2215(1)3011(1)39(1)Cl214259(1)1976(1)4674(1)43(1)C1211085(4)3610(2)1172(2)39(1)Cl1210728(1)3332(1)226(1)54(1)Cl2211200(1)3022(1)1868(1)43(1)	C(45B)	1773(3)	6495(1)	2616(2)	21(1)
C113989(4)1652(2)3739(2)36(1)Cl113790(1)2215(1)3011(1)39(1)Cl214259(1)1976(1)4674(1)43(1)C1211085(4)3610(2)1172(2)39(1)Cl1210728(1)3332(1)226(1)54(1)Cl2211200(1)3022(1)1868(1)43(1)	C(46B)	2711(3)	6365(1)	2079(2)	18(1)
Cl113790(1)2215(1)3011(1)39(1)Cl214259(1)1976(1)4674(1)43(1)C1211085(4)3610(2)1172(2)39(1)Cl1210728(1)3332(1)226(1)54(1)Cl2211200(1)3022(1)1868(1)43(1)	C11	3989(4)	1652(2)	3739(2)	36(1)
Cl214259(1)1976(1)4674(1)43(1)C1211085(4)3610(2)1172(2)39(1)Cl1210728(1)3332(1)226(1)54(1)Cl2211200(1)3022(1)1868(1)43(1)	CI11	3790(1)	2215(1)	3011(1)	39(1)
C1211085(4)3610(2)1172(2)39(1)Cl1210728(1)3332(1)226(1)54(1)Cl2211200(1)3022(1)1868(1)43(1)	Cl21	4259(1)	1976(1)	4674(1)	43(1)
Cl1210728(1)3332(1)226(1)54(1)Cl2211200(1)3022(1)1868(1)43(1)	C12	11085(4)	3610(2)	1172(2)	39(1)
Cl22 11200(1) 3022(1) 1868(1) 43(1)	Cl12	10728(1)	3332(1)	226(1)	54(1)
	Cl22	11200(1)	3022(1)	1868(1)	43(1)

Table S13. Anisotropic displacement parameters (Å² x 10³) for $(Y_{CN})_2$ PPh. The anisotropic displacement factor exponent takes the form: $-2\pi^2 [h^2 a \cdot ^2 U^{11} + ... + 2 h k a \cdot b \cdot U^{12}]$.

	U ¹¹	U ²²	U ²²	U ²³	U ¹³	U ¹²
P(1A)	12(1)	11(1)	13(1)	-2(1)	0(1)	-1(1)
P(2A)	12(1)	11(1)	12(1)	-1(1)	0(1)	-1(1)
P(3A)	12(1)	10(1)	12(1)	-1(1)	1(1)	0(1)
N(1A)	20(1)	18(1)	17(1)	0(1)	-1(1)	1(1)
N(2A)	16(1)	26(1)	23(1)	-2(1)	-1(1)	3(1)
C(1A)	14(1)	12(1)	16(1)	-2(1)	-1(1)	0(1)

C(2A)	16(1)	13(1)	13(1)	-3(1)	4(1)	-4(1)
C(3A)	18(1)	12(1)	15(1)	-1(1)	-3(1)	0(1)
C(4A)	19(1)	20(1)	22(1)	-4(1)	1(1)	0(1)
C(5A)	23(1)	26(2)	32(2)	-12(1)	-2(1)	4(1)
C(6A)	30(2)	16(1)	35(2)	-10(1)	-8(1)	3(1)
C(7A)	28(2)	15(1)	33(2)	-4(1)	-5(1)	-7(1)
C(8A)	20(1)	19(1)	23(1)	-3(1)	-1(1)	-3(1)
C(9A)	14(1)	13(1)	15(1)	1(1)	-1(1)	-3(1)
C(10A)	17(1)	19(1)	16(1)	-1(1)	2(1)	-5(1)
C(11A)	28(2)	25(1)	15(1)	2(1)	-2(1)	-8(1)
C(12A)	28(2)	21(1)	24(1)	9(1)	-7(1)	-2(1)
C(13A)	24(1)	17(1)	24(1)	1(1)	-3(1)	1(1)
C(14A)	18(1)	15(1)	18(1)	-1(1)	-1(1)	-2(1)
C(15A)	16(1)	12(1)	16(1)	-1(1)	3(1)	-2(1)
C(16A)	17(1)	19(1)	18(1)	-1(1)	0(1)	-1(1)
C(17A)	16(1)	26(2)	29(2)	-5(1)	7(1)	-4(1)
C(18A)	26(2)	33(2)	23(2)	-3(1)	13(1)	-10(1)
C(19A)	28(2)	32(2)	18(1)	4(1)	3(1)	-6(1)
C(20A)	18(1)	19(1)	22(2)	3(1)	-1(1)	-1(1)
C(21A)	13(1)	13(1)	15(1)	-2(1)	1(1)	0(1)
C(22A)	19(1)	15(1)	14(1)	-3(1)	3(1)	-4(1)
C(23A)	18(1)	12(1)	14(1)	-1(1)	-3(1)	-1(1)
C(24A)	26(2)	16(1)	22(2)	-2(1)	-1(1)	2(1)
C(25A)	39(2)	17(1)	24(2)	-6(1)	-3(1)	2(1)
C(26A)	45(2)	12(1)	25(2)	-2(1)	-11(1)	-5(1)
C(27A)	27(2)	22(2)	26(2)	6(1)	-7(1)	-11(1)
C(28A)	22(1)	18(1)	18(1)	0(1)	-1(1)	-4(1)
C(29A)	15(1)	14(1)	15(1)	-4(1)	-2(1)	4(1)
C(30A)	21(1)	15(1)	20(1)	-2(1)	-1(1)	3(1)
C(31A)	31(2)	21(1)	25(2)	-1(1)	-9(1)	11(1)
C(32A)	22(1)	32(2)	31(2)	-11(1)	-10(1)	10(1)
C(33A)	16(1)	28(2)	31(2)	-11(1)	1(1)	0(1)
C(34A)	16(1)	18(1)	23(1)	-4(1)	1(1)	0(1)
C(35A)	16(1)	16(1)	13(1)	1(1)	0(1)	-2(1)
C(36A)	14(1)	18(1)	19(1)	4(1)	0(1)	0(1)
C(37A)	18(1)	20(1)	27(2)	8(1)	-1(1)	2(1)
C(38A)	19(1)	29(2)	19(1)	12(1)	-4(1)	-4(1)
C(39A)	23(2)	34(2)	18(1)	5(1)	5(1)	0(1)
C(40A)	27(2)	19(1)	24(2)	0(1)	6(1)	3(1)
C(41A)	14(1)	15(1)	15(1)	2(1)	0(1)	1(1)
C(42A)	22(1)	19(1)	15(1)	-1(1)	0(1)	-2(1)
C(43A)	17(1)	21(1)	21(1)	4(1)	-4(1)	-4(1)
C(44A)	21(1)	25(1)	23(1)	8(1)	7(1)	1(1)
C(45A)	40(2)	25(2)	20(1)	-4(1)	13(1)	-4(1)
C(46A)	31(2)	20(1)	22(1)	-5(1)	8(1)	-7(1)
P(1B)	11(1)	11(1)	12(1)	1(1)	0(1)	0(1)
P(2B)	12(1)	10(1)	12(1)	1(1)	0(1)	-1(1)
P(3B)	11(1)	11(1)	12(1)	1(1)	0(1)	1(1)
N(1B)	18(1)	27(1)	18(1)	-1(1)	0(1)	-4(1)
N(2B)	19(1)	16(1)	20(1)	0(1)	-2(1)	-2(1)

C(1B)	13(1)	16(1)	12(1)	1(1)	0(1)	-1(1)
C(2B)	16(1)	16(1)	12(1)	2(1)	2(1)	-1(1)
C(3B)	26(1)	11(1)	13(1)	-1(1)	-4(1)	0(1)
C(4B)	23(1)	16(1)	22(1)	-3(1)	-4(1)	2(1)
C(5B)	29(2)	20(1)	29(2)	-6(1)	-9(1)	6(1)
C(6B)	50(2)	17(1)	24(2)	1(1)	-14(1)	9(1)
C(7B)	61(2)	16(2)	23(2)	5(1)	4(2)	1(2)
C(8B)	37(2)	17(1)	23(2)	2(1)	7(1)	1(1)
C(9B)	13(1)	17(1)	14(1)	0(1)	0(1)	1(1)
C(10B)	23(1)	19(1)	18(1)	1(1)	6(1)	0(1)
C(11B)	23(1)	27(2)	16(1)	2(1)	5(1)	4(1)
C(12B)	16(1)	29(2)	19(1)	-9(1)	-1(1)	7(1)
C(13B)	18(1)	22(1)	26(2)	-10(1)	-1(1)	-3(1)
C(14B)	15(1)	19(1)	19(1)	-4(1)	2(1)	-2(1)
C(15B)	14(1)	16(1)	18(1)	5(1)	-1(1)	-3(1)
C(16B)	24(2)	20(1)	22(1)	-2(1)	-2(1)	-6(1)
C(17B)	35(2)	24(2)	26(2)	1(1)	-10(1)	-8(1)
C(18B)	26(2)	31(2)	34(2)	10(1)	-14(1)	-15(1)
C(19B)	16(1)	32(2)	38(2)	14(1)	-6(1)	-2(1)
C(20B)	18(1)	21(1)	24(2)	5(1)	1(1)	-2(1)
C(21B)	12(1)	12(1)	16(1)	0(1)	0(1)	2(1)
C(22B)	15(1)	14(1)	12(1)	1(1)	2(1)	4(1)
C(23B)	15(1)	13(1)	16(1)	0(1)	0(1)	1(1)
C(24B)	17(1)	19(1)	18(1)	-2(1)	0(1)	0(1)
C(25B)	26(2)	25(2)	16(1)	-5(1)	2(1)	-1(1)
C(26B)	22(1)	26(1)	24(2)	-2(1)	10(1)	-1(1)
C(27B)	13(1)	23(1)	28(2)	-1(1)	3(1)	1(1)
C(28B)	16(1)	21(1)	18(1)	1(1)	1(1)	2(1)
C(29B)	19(1)	13(1)	15(1)	2(1)	-2(1)	0(1)
C(30B)	21(2)	18(1)	26(2)	1(1)	0(1)	4(1)
C(31B)	30(2)	18(2)	38(2)	3(1)	-7(1)	7(1)
C(32B)	34(2)	18(1)	37(2)	10(1)	-10(1)	-3(1)
C(33B)	26(2)	23(2)	29(2)	9(1)	-3(1)	-4(1)
C(34B)	19(1)	17(1)	21(1)	4(1)	-1(1)	1(1)
C(35B)	10(1)	16(1)	17(1)	-2(1)	0(1)	2(1)
C(36B)	15(1)	20(1)	15(1)	1(1)	1(1)	3(1)
C(37B)	20(1)	28(2)	16(1)	-4(1)	0(1)	5(1)
C(38B)	20(1)	26(1)	21(1)	-11(1)	-2(1)	2(1)
C(39B)	18(1)	17(1)	26(2)	-4(1)	2(1)	1(1)
C(40B)	13(1)	18(1)	17(1)	-1(1)	0(1)	2(1)
C(41B)	16(1)	11(1)	17(1)	1(1)	2(1)	0(1)
C(42B)	18(1)	24(1)	18(1)	-1(1)	-2(1)	1(1)
C(43B)	26(1)	26(1)	15(1)	-2(1)	2(1)	-1(1)
C(44B)	21(1)	22(1)	19(1)	-1(1)	5(1)	0(1)
C(45B)	17(1)	24(1)	22(1)	1(1)	2(1)	3(1)
C(46B)	18(1)	21(1)	15(1)	0(1)	0(1)	1(1)
C11	48(2)	26(2)	34(2)	-7(1)	4(2)	4(2)
CI11	56(1)	31(1)	28(1)	-4(1)	4(1)	-10(1)
Cl21	44(1)	54(1)	32(1)	-10(1)	-10(1)	18(1)
C12	47(2)	32(2)	39(2)	-5(2)	4(2)	-7(2)
	· ·	· · ·	· · ·	``	· · ·	· · ·

CI12	60(1)	61(1)	42(1)	-16(1)	-2(1)	-8(1)	
Cl22	50(1)	30(1)	48(1)	-2(1)	10(1)	-6(1)	

3.2.3 Crystal Structure Determination of $(Y_{CN})_2 PCy$

Figure S43 ORTEP Plot of $(Y_{CN})_2$ PCy. Ellipsoids are drawn at the 50% probability level.

Table S14. Atomic coordinates	(x 10 ⁴) and equivalent	isotropic displacement	nt parameters (/	Å ² х 10 ³) for (Үсм)₂РСу.
U(eq) is defined as one third of	the trace of the orthogo	onalized U ^{ij} tensor.		

	х	У	Z	U(eq)	
P(1)	6036(1)	6292(1)	2519(1)	13(1)	
P(2)	6927(1)	7877(1)	4054(1)	15(1)	
P(3)	5801(1)	7608(1)	1392(1)	13(1)	
N(1)	3359(2)	6154(2)	3643(1)	24(1)	
N(2)	2471(2)	6641(2)	1819(1)	37(1)	
C(1)	5687(2)	6863(2)	3383(1)	16(1)	
C(2)	4411(2)	6494(2)	3529(1)	18(1)	
C(3)	7152(2)	7444(2)	4878(1)	21(1)	
C(4)	6603(3)	6296(2)	4851(1)	43(1)	
C(5)	6779(3)	5925(3)	5467(1)	54(1)	
C(6)	7501(3)	6705(2)	6111(1)	42(1)	
C(7)	8066(3)	7839(2)	6140(1)	36(1)	

C(8)	7900(2)	8218(2)	5529(1)	28(1)
C(9)	8532(2)	7992(2)	3793(1)	18(1)
C(10)	9194(2)	7090(2)	3821(1)	29(1)
C(11)	10366(2)	7080(2)	3560(1)	34(1)
C(12)	10873(2)	7953(2)	3268(1)	33(1)
C(13)	10220(2)	8853(2)	3247(1)	29(1)
C(14)	9049(2)	8880(2)	3512(1)	22(1)
C(15)	6577(2)	9322(2)	4275(1)	19(1)
C(16)	5255(2)	9403(2)	4013(1)	22(1)
C(17)	4901(2)	10477(2)	4173(1)	30(1)
C(18)	5862(3)	11475(2)	4597(1)	34(1)
C(19)	7169(3)	11401(2)	4855(1)	35(1)
C(20)	7542(2)	10336(2)	4699(1)	27(1)
C(21)	5006(2)	6815(2)	1879(1)	16(1)
C(22)	3621(2)	6730(2)	1836(1)	21(1)
C(23)	4523(2)	7787(2)	698(1)	16(1)
C(24)	4480(2)	8891(2)	612(1)	18(1)
C(25)	3478(2)	9001(2)	79(1)	23(1)
C(26)	2530(2)	8016(2)	-370(1)	24(1)
C(27)	2574(2)	6916(2)	-286(1)	23(1)
C(28)	3565(2)	6796(2)	-200(1)	20(1)
C(20)	6772(2)	9073(2)	1906(1)	16(1)
C(20)	6340(2)	9640(2)	2403(1)	18(1)
C(31)	7056(2)	9040(2) 10765(2)	2493(1)	22(1)
C(32)	8106(2)	10705(2)	2301(1)	22(1)
C(32)	8627(2)	10756(2)	2120(1)	20(1)
C(33)	0027(2) 7017(2)	10750(2)	2131(1)	21(1)
C(34)	7917(2)	9030(2)	1720(1)	2 I (I) 1 G (1)
C(35)	7032(2)	6970(2)	970(1)	10(1)
C(30)	0194(2)	6624(2) 6427(2)	1401(1)	23(1)
C(37)	9193(2)	6437(2)	1085(1)	28(1)
C(38)	9047(2)	6196(2)	351(1)	30(1)
C(39)	7891(2)	6318(2)	-/1(1)	33(1)
C(40)	6886(2)	6705(2)	243(1)	24(1)
C(41)	5111(2)	4728(2)	2276(1)	16(1)
C(42)	5332(2)	4103(2)	1548(1)	18(1)
C(43)	4714(2)	2782(2)	1328(1)	22(1)
C(44)	5263(2)	2231(2)	1899(1)	25(1)
C(45)	4990(2)	2826(2)	2616(1)	24(1)
C(46)	5622(2)	4146(2)	2845(1)	20(1)
CI1A1	1219(5)	3125(4)	1837(2)	34(1)
CI2A1	-898(3)	4255(3)	2285(1)	35(1)
CI1B1	1100(30)	3220(20)	1739(19)	60(5)
CI2B1	-760(30)	4178(15)	2450(30)	65(5)
C11	822(2)	4458(2)	2250(1)	34(1)
CI12	914(1)	9893(1)	915(1)	63(1)
CI22	2697(1)	9976(1)	2254(1)	59(1)
C12	1540(3)	9074(2)	1466(2)	43(1)
CI13	1518(3)	5908(2)	5761(1)	80(1)
CI23	-546(3)	4252(2)	4563(1)	79(1)
C13	618(14)	5579(10)	4917(7)	132(6)

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
P(1)	13(1)	15(1)	12(1)	5(1)	2(1)	3(1)
P(2)	16(1)	16(1)	12(1)	3(1)	1(1)	3(1)
P(3)	13(1)	14(1)	12(1)	4(1)	2(1)	3(1)
N(1)	21(1)	27(1)	25(1)	8(1)	7(1)	4(1)
N(2)	19(1)	55(1)	51(1)	38(1)	11(1)	11(1)
C(1)	15(1)	16(1)	14(1)	4(1)	2(1)	2(1)
C(2)	21(1)	18(1)	14(1)	3(1)	2(1)	5(1)
C(3)	21(1)	26(1)	16(1)	7(1)	2(1)	7(1)
C(4)	61(2)	34(1)	23(1)	14(1)	-9(1)	-6(1)
C(5)	76(2)	42(1)	32(1)	22(1)	-9(1)	-8(1)
C(6)	56(2)	52(2)	21(1)	20(1)	2(1)	15(1)
C(7)	48(1)	41(1)	16(1)	3(1)	-2(1)	18(1)
C(8)	36(1)	27(1)	20(1)	4(1)	-1(1)	10(1)
C(9)	14(1)	20(1)	17(1)	1(1)	-1(1)	1(1)
C(10)	23(1)	21(1)	40(1)	4(1)	3(1)	6(1)
C(11)	20(1)	28(1)	48(1)	-3(1)	3(1)	8(1)
C(12)	17(1)	45(1)	28(1)	-4(1)	4(1)	5(1)
C(13)	19(1)	40(1)	24(1)	9(1)	4(1)	1(1)
C(14)	18(1)	26(1)	20(1)	6(1)	1(1)	4(1)
C(15)	26(1)	19(1)	13(1)	4(1)	7(1)	7(1)
C(16)	25(1)	24(1)	20(1)	9(1)	9(1)	9(1)
C(17)	38(1)	33(1)	30(1)	14(1)	17(1)	20(1)
C(18)	59(2)	25(1)	26(1)	8(1)	20(1)	21(1)
C(19)	57(2)	19(1)	21(1)	-1(1)	5(1)	7(1)
C(20)	35(1)	23(1)	19(1)	3(1)	0(1)	4(1)
C(21)	15(1)	17(1)	15(1)	7(1)	3(1)	4(1)
C(22)	20(1)	23(1)	22(1)	14(1)	3(1)	5(1)
C(23)	14(1)	20(1)	14(1)	7(1)	5(1)	5(1)
C(24)	18(1)	21(1)	17(1)	6(1)	5(1)	5(1)
C(25)	25(1)	26(1)	25(1)	14(1)	7(1)	11(1)
C(26)	19(1)	37(1)	19(1)	13(1)	2(1)	8(1)
C(27)	19(1)	29(1)	17(1)	6(1)	1(1)	2(1)
C(28)	20(1)	22(1)	18(1)	7(1)	4(1)	4(1)
C(29)	14(1)	16(1)	16(1)	5(1)	0(1)	3(1)
C(30)	20(1)	19(1)	18(1)	7(1)	4(1)	6(1)
C(31)	31(1)	18(1)	18(1)	4(1)	2(1)	10(1)
C(32)	29(1)	15(1)	26(1)	3(1)	-3(1)	2(1)
C(33)	23(1)	21(1)	34(1)	9(1)	5(1)	-1(1)
C(34)	20(1)	21(1)	23(1)	5(1)	7(1)	2(1)
C(35)	16(1)	14(1)	20(1)	5(1)	6(1)	3(1)
C(36)	19(1)	28(1)	27(1)	13(1)	6(1)	7(1)
C(37)	19(1)	27(1)	44(1)	17(1)	10(1)	9(1)
C(38)	28(1)	22(1)	44(1)	8(1)	20(1)	10(1)
C(39)	36(1)	37(1)	26(1)	3(1)	14(1)	13(1)
C(40)	25(1)	28(1)	21(1)	4(1)	6(1)	9(1)

Table S15. Anisotropic displacement parameters ($\mathring{A}^2 \times 10^3$) for $(Y_{CN})_2 PCy$. The anisotropic displacement factor exponent takes the form: $-2\pi^2 [h^2 a \cdot U^{11} + ... + 2 h k a \cdot b \cdot U^{12}]$.

C(42) $22(1)$ $18(1)$ $16(1)$ $5(1)$ $4(1)$ $5(1)$ $C(43)$ $25(1)$ $18(1)$ $20(1)$ $2(1)$ $6(1)$ $6(1)$	
C(43) 25(1) 18(1) 20(1) 2(1) 6(1) 6(1)	
C(44) 36(1) 18(1) 26(1) 7(1) 12(1) 11(1)	
C(45) 36(1) 20(1) 24(1) 10(1) 14(1) 11(1)	
C(46) 27(1) 20(1) 18(1) 8(1) 7(1) 10(1)	
CI1A1 26(1) 32(1) 45(1) 11(1) 14(1) 4(1)	
CI2A1 22(1) 39(1) 38(1) 4(1) 6(1) 3(1)	
Cl1B1 34(5) 63(8) 74(9) 1(5) 27(6) -2(4)	
Cl2B1 42(6) 30(3) 121(13) 6(7) 45(7) 2(3)	
C11 22(1) 26(1) 52(1) 15(1) 2(1) -1(1)	
Cl12 71(1) 76(1) 78(1) 40(1) 49(1) 46(1)	
Cl22 48(1) 52(1) 60(1) -4(1) 24(1) -16(1)	
C12 43(1) 34(1) 50(2) 7(1) 19(1) 3(1)	
Cl13 127(2) 46(1) 53(1) 3(1) -13(1) 30(1)	
Cl23 96(2) 58(1) 63(1) 3(1) -9(1) 9(1)	
C13 153(12) 86(7) 105(9) 14(7) -64(9) 2(7)	

3.2.4 Crystal Structure Determination of $(Y_{\text{CN}})_2 P^t Bu$

Figure S44 ORTEP Plot of (Ycn)2PtBu. Ellipsoids are drawn at the 50% probability level.

Table S16. Atomic coordinates (x 10 ⁴) and ec	quivalent isotropic displacement parameters (Å ² x 10 ³) for (Υ_{сν)2}Ρ^tBu.
U(eq) is defined as one third of the trace of th	e orthogonalized U ^{ij} tensor.

	х	У	Z	U(eq)
P(1)	2660(1)	3492(1)	4202(1)	14(1)
P(2)	2964(1)	4079(1)	2639(1)	14(1)
P(3)	4406(1)	2468(1)	4587(1)	14(1)
N(1)	-155(2)	3253(1)	2530(1)	26(1)
N(2)	1096(2)	1951(1)	3773(1)	22(1)
C(1)	2046(2)	3632(1)	3216(1)	16(1)
C(2)	831(2)	3416(1)	2855(1)	19(1)
C(3)	2059(2)	4750(1)	2374(1)	19(1)

C(4)	740(3)	4821(1)	2602(2)	26(1)
C(5)	17(3)	5328(1)	2413(2)	32(1)
C(6)	600(3)	5761(1)	1986(2)	31(1)
C(7)	1917(3)	5694(1)	1752(2)	34(1)
C(8)	2648(3)	5193(1)	1949(2)	29(1)
C(9)	3391(2)	3732(1)	1736(1)	18(1)
C(10)	4231(3)	4019(1)	1229(2)	27(1)
C(11)	4638(3)	3737(1)	572(2)	27(1)
C(12)	4207(2)	3173(1)	409(1)	24(1)
C(13)	3374(2)	2889(1)	909(1)	23(1)
C(14)	2968(2)	3166(1)	1576(1)	19(1)
C(15)	4575(2)	4288(1)	3107(1)	17(1)
C(16)	4629(2)	4753(1)	3632(1)	19(1)
C(17)	5868(3)	4913(1)	3992(1)	24(1)
C(18)	7049(3)	4616(1)	3820(2)	26(1)
C(19)	7000(3)	4157(1)	3298(2)	25(1)
C(20)	5760(2)	3988(1)	2946(1)	20(1)
C(21)	2791(2)	2708(1)	4325(1)	16(1)
C(22)	1860(2)	2297(1)	4020(1)	16(1)
C(23)	4371(2)	1742(1)	4993(1)	18(1)
C(24)	5463(2)	1361(1)	4922(1)	20(1)
C(25)	5475(3)	823(1)	5287(2)	26(1)
C(26)	4402(3)	661(1)	5726(2)	27(1)
C(27)	3316(3)	1038(1)	5807(2)	27(1)
C(28)	3294(3)	1576(1)	5437(1)	22(1)
C(29)	5248(2)	2927(1)	5315(1)	16(1)
C(30)	5917(2)	3435(1)	5102(1)	19(1)
C(31)	6550(3)	3786(1)	5668(2)	23(1)
C(32)	6510(3)	3633(1)	6446(2)	26(1)
C(33)	5841(3)	3132(1)	6658(1)	25(1)
C(34)	5214(2)	2774(1)	6097(1)	20(1)
C(35)	5509(2)	2437(1)	3782(1)	16(1)
C(36)	4907(2)	2367(1)	3042(1)	20(1)
C(37)	5717(3)	2313(1)	2408(1)	24(1)
C(38)	7119(3)	2337(1)	2512(1)	24(1)
C(39)	7735(2)	2412(1)	3250(1)	22(1)
C(40)	6930(2)	2462(1)	3883(1)	19(1)
C(41)	1231(2)	3696(1)	4830(1)	18(1)
C(42)	1746(3)	3566(1)	5667(1)	28(1)
C(43)	-106(3)	3375(1)	4657(2)	26(1)
C(44)	1002(3)	4352(1)	4750(2)	27(1)
CI11	6261(1)	5808(1)	2462(1)	45(1)
Cl21	6478(1)	5316(1)	926(1)	45(1)
C11	6421(3)	5963(1)	1478(2)	33(1)

Table S17. Anisotropic displacement parameters (Å² x 10³) for $(Y_{CN})_2 P^t B u$. The anisotropic displacement factor exponent takes the form: $-2\pi^2 [h^2 a \cdot ^2 U^{11} + ... + 2 h k a \cdot b \cdot U^{12}]$.

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
P(1)	17(1)	12(1)	13(1)	1(1)	3(1)	0(1)

P(2)	18(1)	12(1)	14(1)	1(1)	3(1)	-1(1)
P(3)	16(1)	12(1)	14(1)	1(1)	3(1)	1(1)
N(1)	25(1)	33(1)	21(1)	2(1)	1(1)	-9(1)
N(2)	22(1)	17(1)	26(1)	-2(1)	2(1)	-2(1)
C(1)	19(1)	16(1)	12(1)	1(1)	3(1)	-2(1)
C(2)	21(1)	21(1)	16(1)	3(1)	6(1)	-1(1)
C(3)	24(1)	14(1)	17(1)	-1(1)	-2(1)	1(1)
C(4)	28(1)	23(1)	28(1)	3(1)	4(1)	5(1)
C(5)	31(1)	29(1)	36(1)	-1(1)	0(1)	12(1)
C(6)	45(2)	14(1)	32(1)	-1(1)	-10(1)	8(1)
C(7)	47(2)	19(1)	34(1)	8(1)	-1(1)	1(1)
C(8)	34(1)	22(1)	32(1)	6(1)	5(1)	-1(1)
C(9)	20(1)	20(1)	14(1)	0(1)	4(1)	0(1)
C(10)	32(1)	22(1)	26(1)	-2(1)	10(1)	-6(1)
C(11)	29(1)	32(1)	22(1)	0(1)	12(1)	-4(1)
C(12)	22(1)	31(1)	18(1)	-5(1)	6(1)	3(1)
C(13)	22(1)	24(1)	23(1)	-6(1)	2(1)	-1(1)
C(14)	20(1)	21(1)	18(1)	0(1)	2(1)	-1(1)
C(15)	18(1)	16(1)	18(1)	3(1)	2(1)	-3(1)
C(16)	23(1)	15(1)	21(1)	0(1)	3(1)	-2(1)
C(17)	28(1)	22(1)	24(1)	-1(1)	1(1)	-6(1)
C(18)	22(1)	29(1)	27(1)	5(1)	-3(1)	-6(1)
C(19)	22(1)	24(1)	29(1)	6(1)	4(1)	0(1)
C(20)	21(1)	18(1)	22(1)	1(1)	4(1)	-2(1)
C(21)	17(1)	14(1)	16(1)	0(1)	2(1)	0(1)
C(22)	18(1)	14(1)	18(1)	2(1)	5(1)	4(1)
C(23)	21(1)	16(1)	17(1)	3(1)	1(1)	0(1)
C(24)	21(1)	16(1)	24(1)	-1(1)	4(1)	0(1)
C(25)	30(1)	17(1)	30(1)	0(1)	-2(1)	6(1)
C(26)	36(1)	15(1)	29(1)	8(1)	-2(1)	-1(1)
C(27)	32(1)	22(1)	29(1)	7(1)	6(1)	-4(1)
C(28)	23(1)	19(1)	25(1)	4(1)	7(1)	0(1)
C(29)	15(1)	16(1)	19(1)	-3(1)	2(1)	3(1)
C(30)	21(1)	18(1)	19(1)	-1(1)	4(1)	2(1)
C(31)	24(1)	17(1)	28(1)	-4(1)	3(1)	0(1)
C(32)	27(1)	27(1)	24(1)	-10(1)	-3(1)	4(1)
C(33)	29(1)	28(1)	18(1)	-2(1)	2(1)	8(1)
C(34)	21(1)	20(1)	18(1)	0(1)	4(1)	6(1)
C(35)	18(1)	11(1)	18(1)	0(1)	6(1)	0(1)
C(36)	20(1)	20(1)	20(1)	-2(1)	4(1)	0(1)
C(37)	27(1)	30(1)	14(1)	-4(1)	3(1)	1(1)
C(38)	23(1)	28(1)	21(1)	2(1)	10(1)	2(1)
C(39)	18(1)	23(1)	23(1)	3(1)	8(1)	-1(1)
C(40)	20(1)	20(1)	17(1)	2(1)	2(1)	1(1)
C(41)	21(1)	16(1)	16(1)	-2(1)	4(1)	1(1)
C(42)	35(1)	35(1)	16(1)	2(1)	8(1)	10(1)
C(43)	23(1)	26(1)	30(1)	-7(1)	10(1)	-1(1)
C(44)	36(1)	19(1)	26(1)	-4(1)	6(1)	6(1)
CI11	40(1)	57(1)	38(1)	14(1)	14(1)	12(1)
Cl21	56(1)	23(1)	57(1)	1(1)	19(1)	3(1)

C11 38(2) 24(1) 39(2) 8(1) 12(1) 3(1)

Figure S45 ORTEP Plot of (Ycn)3P. Ellipsoids are drawn at the 50% probability level.

	Х	У	Z	U(eq)	
P(1)	3381(1)	3195(1)	7959(1)	21(1)	
P(2)	3196(1)	2240(1)	8008(1)	26(1)	
P(3)	2583(1)	3321(1)	8090(1)	24(1)	
P(4)	4310(1)	4011(1)	7883(1)	21(1)	
P(5)	3333	6667	6030(1)	17(1)	
P(6)	3624(1)	5983(1)	6067(1)	19(1)	
N(1)	2841(1)	2464(1)	4765(3)	35(1)	
N(2)	3146(1)	3705(1)	4792(2)	31(1)	
N(3)	4089(1)	3333(1)	4796(2)	29(1)	
N(4)	3922(1)	6606(1)	2793(2)	30(1)	
C(1)	3206(1)	2670(1)	7140(3)	26(1)	
C(2)	3016(1)	2566(1)	5824(3)	28(1)	
C(3)	3449(1)	1992(1)	7000(3)	31(1)	
C(4)	3788(1)	2267(1)	6105(3)	35(1)	
C(5)	4001(1)	2094(1)	5349(3)	41(1)	
C(6)	3875(1)	1653(1)	5472(3)	39(1)	
C(7)	3544(1)	1387(1)	6346(3)	40(1)	
C(8)	3328(1)	1553(1)	7118(3)	37(1)	
C(9)	2652(1)	1798(1)	8484(3)	34(1)	

Table S18. Atomic coordinates ($x \ 10^4$) and equivalent isotropic displacement parameters (Å²x 10³) for (Y_{CN})₃P. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

\sim	
~	トノ
0	ᅳ

C(10)	2289(1)	1746(1)	7748(4)	45(1)
C(11)	1971(1)	1416(2)	8105(F)	62(1)
	1071(1)	1410(2)	8105(5)	02(1)
C(12)	1810(2)	1144(1)	9203(5)	67(1)
C(13)	2170(2)	1194(1)	9948(5)	60(1)
C(14)	2504(1)	1502(1)	0592(4)	40(1)
C(14)	2594(1)	1523(1)	9563(4)	40(1)
C(15)	3496(1)	2426(1)	9600(3)	29(1)
C(16)	3303(1)	2519(1)	10718(3)	34(1)
0(10)	0500(1)	2010(1)	107 10(0)	0
C(17)	3526(1)	2656(1)	11948(3)	35(1)
C(18)	3934(1)	2692(1)	12089(3)	35(1)
C(10)	4100(1)	2602(1)	11000(2)	11(1)
C(19)	4122(1)	2003(1)	11009(3)	41(1)
C(20)	3903(1)	2468(1)	9749(3)	35(1)
C(21)	3014(1)	3353(1)	7169(3)	23(1)
0(21)		2520(1)	F 100(0)	20(1)
C(ZZ)	3083(1)	3536(1)	5666(3)	25(1)
C(23)	2480(1)	2995(1)	9639(3)	27(1)
C(24)	2732(1)	3186(1)	10818(3)	33(1)
C(2F)	2652(1)	2029(1)	11002(2)	25(1)
C(25)	2003(1)	2936(1)	11992(3)	35(1)
C(26)	2327(1)	2501(1)	12010(3)	40(1)
C(27)	2086(1)	2312(1)	10834(4)	15(1)
0(27)	2000(1)	2512(1)	10034(4)	
C(28)	2162(1)	2562(1)	9654(3)	39(1)
C(29)	2079(1)	3060(1)	7082(3)	28(1)
Cianí	2031(1)	27/1(1)	6144(3)	3/(1)
0(00)	2001(1)	2741(1)	5101(0)	3-(1)
C(31)	1641(1)	2513(1)	5404(3)	41(1)
C(32)	1308(1)	2612(1)	5586(3)	40(1)
C(33)	1360(1)	2036(1)	6516(3)	38(1)
0(33)	1300(1)	2930(1)	0310(3)	30(1)
C(34)	1749(1)	3160(1)	7269(3)	32(1)
C(35)	2672(1)	3851(1)	8655(3)	30(1)
C(2C)	2450(1)	2804(1)		27(1)
C(30)	2459(1)	3694(1)	9606(3)	37(1)
C(37)	2561(1)	4309(1)	10261(3)	41(1)
C(38)	2870(1)	4678(1)	9591(3)	43(1)
	2070(1)	1070(1)	0405(0)	10(1)
C(39)	3076(2)	4637(1)	8425(3)	49(1)
C(40)	2981(1)	4227(1)	7980(3)	38(1)
C(41)	3901(1)	3547(1)	7106(3)	23(1)
	4000(1)	0047(1)	7100(0)	20(1)
C(42)	4002(1)	3436(1)	5833(3)	22(1)
C(43)	4815(1)	3985(1)	8033(3)	26(1)
C(44)	5230(1)	4354(1)	8109(3)	35(1)
0(44)	5200(1)	4004(1)	0100(0)	40(1)
C(45)	5601(1)	4308(1)	8171(3)	42(1)
C(46)	5560(1)	3900(1)	8167(3)	43(1)
C(AZ)	5154(1)	3538(1)	8076(4)	17(1)
	4777(4)	0000(1)		+/(1)
C(48)	4777(1)	3574(1)	8010(3)	36(1)
C(49)	4464(1)	4525(1)	6994(3)	25(1)
C(50)	4740(1)	1927(1)	7617(3)	30(1)
0(50)	4000(4)	+327(1)	7017(3)	00(1)
C(51)	4866(1)	5315(1)	6920(3)	35(1)
C(52)	4708(1)	5301(1)	5596(3)	35(1)
C(53)	4432(1)	4902(1)	4987(3)	32(1)
	4207(4)	4540(4)	FC07(0)	02(1)
C(54)	4307(1)	4512(1)	5687(3)	28(1)
C(55)	4128(1)	4067(1)	9570(3)	25(1)
C(56)	4142(1)	3819(1)	10660(3)	29(1)
C(57)	2071(1)	2920(1)	11020(2)	22(1)
C(57)	3971(1)	3639(1)	11929(3)	33(1)
C(58)	3784(1)	4105(1)	12098(3)	34(1)
C(59)	3766(1)	4345(1)	11009(3)	38(1)
	2020(1)	4220(1)	0720(2)	22(1)
C(00)	3939(1)	4330(1)	9729(3)	32(1)
C(61)	3584(1)	6384(1)	5197(2)	19(1)
C(62)	3764(1)	6498(1)	3872(3)	22(1)
	4176(1)	6120(1)	6605(2)	22(1)
C(03)	4170(1)	6130(1)	0000(3)	23(1)
C(64)	4268(1)	5982(1)	7822(3)	26(1)
C(65)	4701(1)	6112(1)	8151(3)	28(1)
	E020(1)	6291(1)	7260(2)	20(1)
C(66)	5039(1)	6361(1)	7260(3)	30(1)
C(67)	4945(1)	6521(1)	6037(3)	29(1)
C(68)	4516(1)	6403(1)	5727(3)	27(1)
	OAAE(A)	5501(4)	4007(2)	22(4)
C(03)	3443(1)	5501(1)	4997(3)	23(1)
C(70)	3588(1)	5203(1)	5238(3)	28(1)
C(71)	3427(1)	4826(1)	4440(3)	32(1)
C(70)		1320(1)	2222(2)	
U(12)	3131(1)	4/52(1)	3390(3)	33(1)
C(73)	2996(1)	5051(1)	3135(3)	35(1)
C(74)	3151(1)	5426(1)	3935(3)	30(1)
		E004(4)	7574(0)	
U(15)	3276(1)	5831(1)	7571(2)	20(1)
C(76)	3436(1)	6054(1)	8808(3)	24(1)
C(77)	3160(1)	5958(1)	9931(3)	25(1)
C(79)	0710(1)	5642(4)	0001(0)	26(1)
0(10)	2/10(1)	JUHZ(I)	3001(3)	20(1)

C(79)	2557(1)	5429(1)	8570(3)	28(1)
C(80)	2835(1)	5519(1)	7448(3)	25(1)
O1A1	1503(12)	1359(9)	4470(30)	273(17)
C1A1	1371(11)	899(9)	4490(30)	203(10)
C2A1	1318(12)	763(10)	2970(30)	215(9)
C3A1	1125(13)	1032(12)	2350(30)	218(11)
C4A1	1309(14)	1439(10)	3270(30)	221(10)
O1C1	788(6)	166(7)	650(30)	168(10)
C1C1	727(17)	95(17)	2110(30)	270(30)
C2C1	481(18)	325(17)	2620(30)	310(30)
C3C1	295(11)	406(14)	1290(50)	310(30)
C4C1	646(13)	470(13)	230(30)	238(19)
O1B1	1587(5)	1261(6)	3210(20)	179(9)
C1B1	1466(7)	808(7)	3440(40)	188(9)
C2B1	963(8)	533(7)	3370(40)	213(10)
C3B1	828(7)	878(11)	3670(40)	320(30)
C4B1	1192(7)	1278(8)	2910(30)	190(9)

Table S19. Anisotropic displacement parameters (Å² x 10³) for **(Y**_{CN})₃**P**. The anisotropic displacement factor exponent takes the form: $-2\pi^2 [h^2 a \cdot ^2 U^{11} + ... + 2 h k a \cdot b \cdot U^{12}]$.

	U ¹¹	U ²²	U ²²	U ²³	U ¹³	U ¹²
P(1)	26(1)	26(1)	16(1)	1(1)	1(1)	17(1)
P(2)	34(1)	28(1)	21(1)	-2(1)	-3(1)	18(1)
P(3)	28(1)	32(1)	18(1)	0(1)	1(1)	19(1)
P(4)	26(1)	27(1)	15(1)	1(1)	1(1)	17(1)
P(5)	18(1)	18(1)	13(1)	0	0	9(1)
P(6)	22(1)	22(1)	14(1)	1(1)	2(1)	12(1)
N(1)	43(2)	43(2)	27(1)	-5(1)	-9(1)	27(1)
N(2)	36(1)	39(1)	22(1)	5(1)	2(1)	23(1)
N(3)	32(1)	38(1)	22(1)	-1(1)	4(1)	21(1)
N(4)	39(1)	36(1)	21(1)	6(1)	8(1)	23(1)
C(1)	33(2)	29(1)	21(1)	0(1)	1(1)	20(1)
C(2)	36(2)	31(1)	24(1)	-2(1)	-1(1)	20(1)
C(3)	43(2)	35(2)	21(1)	-9(1)	-10(1)	23(1)
C(4)	44(Z) 50(2)	37(Z)	32(2)	-2(1)	-4(1)	20(2)
C(5)	50(2)	50(2)	30(2)	-3(2) -9(1)	-Q(1)	34(Z) 30(2)
C(0)	62(2)	38(2)	32(2)	-8(1)	-12(2)	35(2)
C(8)	50(2)	37(2)	26(1)	-3(1)	-6(1)	25(2)
C(9)	38(2)	32(2)	31(2)	-6(1)	0(1)	16(1)
C(10)	39(2)	49(2)	39(2)	0(2)	-2(2)	15(2)
C(11)	44(2)	62(3)	61(2)	0(2)	-8(2)	12(2)
C(12)	51(2)	45(2)	77(3)	3(2)	16(2)	4(2)
C(13)	63(3)	44(2)	65(3)	17(2)	16(2)	22(2)
C(14)	53(2)	39(2)	48(2)	10(2)	7(2)	20(2)
C(15)	39(2)	30(2)	20(1)	1(1)	-2(1)	19(1)
C(16)	42(2)	39(2)	27(1)	2(1)	3(1)	24(2)
C(17)	52(2)	34(2)	22(1)	0(1)	4(1)	23(2)
C(18)	49(2)	34(2)	24(1)	-2(1)	-6(1)	22(2)
C(19)	43(2)	45(2)	39(2)	-9(2)	-14(2)	25(2)
C(20)	41(2)	43(2)	28(2)	-7(1)	-4(1)	26(2)
C(21)	30(1)	29(1)	17(1) 25(1)	0(1)	0(1)	20(1) 19(1)
C(22)	20(1)	30(T) 42(2)	20(1)	-3(1)	-3(1)	22(1)
C(23)	26(1)	42(2)	24(1)	-1(1)	0(1)	22(1)
C(25)	41(2)	55(2)	19(1)	-3(1)	-1(1)	31(2)
C(26)	44(2)	55(2)	25(1)	12(1)	5(1)	29(2)
C(27)	42(2)	45(2)	37(2)	11(2)	-1(2)	15(2)
C(28)	45(2)	42(2)	27(2)	0(1)	-9(1)	21(2)
C(29)	31(2)	38(2)	18(1)	3(1)	-2(1)	19(1)
C(30)	35(2)	40(2)	28(1)	1(1)	-1(1)	21(1)
C(31)	46(2)	46(2)	34(2)	-7(2)	-8(2)	24(2)
C(32)	32(2)	52(2)	33(2)	1(2)	-7(1)	18(2)
C(33)	33(2)	60(2)	30(2)	4(2)	2(1)	30(2)
C(34)	35(2)	46(2)	23(1)	-1(1)	1(1)	26(2)
C(35)	37(2)	42(2)	22(1)	-5(1)	-6(1)	28(1)

C(36) C(37)	36(2) 43(2)	50(2) 56(2)	31(2) 36(2)	-7(1) -20(2)	-1(1) -7(1)	27(2) 35(2)
C(38)	70(2)	47(2)	31(2)	-11(2)	-12(2)	43(2)
C(39)	83(3)	42(2)	29(2)	3(1) 5(1)	5(2) 7(1)	36(2)
C(40) C(41)	28(1)	30(2) 30(1)	17(1)	3(1) 4(1)	2(1)	18(1)
C(42)	24(1)	25(1)	20(1)	1(1)	-1(1)	15(1)
C(43)	32(1)	34(2)	18(1)	0(1)	-1(1)	22(1)
C(44)	35(2)	40(2)	35(2)	12(1)	5(1)	22(1)
C(45)	31(2) 43(2)	62(2) 81(3)	37(2) 20(2)	15(2) -6(2)	6(1) -3(1)	27(2) 48(2)
C(47)	62(2)	69(2)	41(2)	-21(2)	-21(2)	56(2)
C(48)	42(2)	41(2)	34(2)	-12(1)	-11(1)	28(2)
C(49)	31(1)	30(1)	21(1)	6(1)	4(1)	20(1)
C(50)	38(2)	34(2) 31(2)	25(1)	-2(1) -1(1)	2(1)	24(1) 10(1)
C(52)	36(2)	32(2)	42(2)	9(1)	10(1)	20(1)
C(53)	33(2)	40(2)	30(1)	8(1)	1(1)	23(1)
C(54)	28(1)	33(2)	27(1)	4(1)	1(1)	19(1)
C(55)	28(1)	31(1) 36(2)	18(1) 22(1)	-2(1) -3(1)	1(1) -2(1)	15(1) 22(1)
C(57)	36(2)	43(2)	18(1)	2(1)	-2(1)	18(1)
C(58)	38(2)	38(2)	20(1)	-6(1)	6(1)	13(1)
C(59)	48(2)	40(2)	34(2)	-2(1)	13(1)	28(2)
C(60)	41(2)	37(2)	26(1)	6(1) 1(1)	10(1)	26(1)
C(01)	26(1)	23(1)	21(1)	-1(1) 0(1)	-1(1)	17(1)
C(63)	26(1)	25(1)	19(1)	-2(1)	1(1)	14(1)
C(64)	31(1)	31(1)	19(1)	2(1)	4(1)	18(1)
C(65)	36(2)	38(2)	21(1)	0(1)	-4(1)	25(1)
C(60) C(67)	20(1)	35(2)	29(1)	-4(1) 2(1)	-4(1) 4(1)	21(1) 14(1)
C(68)	31(1)	34(2)	20(1)	5(1)	4(1)	20(1)
C(69)	25(1)	25(1)	16(1)	0(1)	4(1)	10(1)
C(70)	33(1)	27(1)	26(1)	1(1) -1(1)	1(1) 4(1)	17(1) 21(1)
C(72)	39(2)	26(1)	31(2)	-6(1)	4(1)	13(1)
C(73)	40(2)	36(2)	29(2)	-11(1)	-7(1)	19(1)
C(74)	35(2)	30(2)	28(1)	-5(1)	-2(1)	19(1)
C(75)	25(1)	21(1) 26(1)	19(1) 22(1)	4(1) 0(1)	4(1)	15(1)
C(77)	34(1)	27(1)	17(1)	-1(1)	-1(1)	18(1)
C(78)	27(1)	31(1)	25(1)	8(1)	10(1)	18(1)
C(79)	27(1)	27(1)	31(1)	4(1)	5(1)	14(1)
O1A1	20(1) 410(40)	232(17)	21(1) 185(18)	-2(1) 30(16)	-80(20)	170(20)
C1A1	173(19)	210(16)	217(18)	40(16)	-42(19)	89(16)
C2A1	168(18)	224(15)	231(19)	22(15)	-35(19)	83(14)
C3A1	200(20)	260(20)	187(17)	30(16) 52(16)	-35(16)	111(19)
01C1	240(20) 69(10)	240(20) 82(11)	320(30)	-13(16)	-25(16)	11(8)
C1C1	320(60)	290(50)	310(30)	-20(30)	20(30)	250(50)
C2C1	450(60)	360(60)	310(30)	-60(40)	-10(40)	340(60)
	340(50)	420(70)	330(40)	-10(40)	20(30)	310(50)
01B1	170(12)	230(40)	200(20)	-30(30) 59(15)	-54(14)	108(11)
C1B1	157(14)	194(13)	230(20)	56(16)	-45(17)	102(11)
C2B1	160(15)	210(15)	250(20)	30(19)	-50(20)	78(12)
C3B1	220(20)	330(30)	460(70)	150(40)	110(40)	190(30)

3.3 Crystal structures of metal complexes

3.3.1 Crystal Structure Determination of Y_{CN}P^tBu₂·AuCl

Figure S46 ORTEP Plot of Y_{CN}P^tBu₂·AuCI. Ellipsoids are drawn at the 50% probability level.

	Х	у	Z	U(eq)
Au(1)	9025(1)	4718(1)	3586(1)	15(1)
P(1)	7974(1)	2753(1)	3296(1)	14(1)
P(2)	6370(1)	3227(1)	4157(1)	13(1)
N(1)	5970(2)	-220(2)	3527(1)	20(1)
CI(1)	10204(1)	6685(1)	3797(1)	22(1)
C(1)	6944(2)	2240(3)	3689(1)	15(1)
C(2)	6411(2)	882(3)	3596(1)	15(1)
C(3)	7193(2)	4802(3)	4393(1)	15(1)
C(4)	6931(2)	6088(3)	4103(1)	19(1)
C(5)	7551(2)	7310(3)	4292(1)	23(1)
C(6)	8439(2)	7255(3)	4766(1)	22(1)
C(7)	8703(2)	5997(3)	5053(1)	21(1)
C(8)	8081(2)	4764(3)	4868(1)	18(1)
C(9)	4878(2)	3775(3)	3891(1)	15(1)
C(10)	4183(2)	2988(3)	3464(1)	18(1)
C(11)	2997(2)	3303(3)	3300(1)	21(1)
C(12)	2524(2)	4410(3)	3553(1)	20(1)
C(13)	3220(2)	5211(3)	3966(1)	20(1)
C(14)	4389(2)	4887(3)	4140(1)	18(1)
C(21)	9014(2)	1204(3)	3336(1)	19(1)
C(20)	7267(2)	1286(3)	4988(1)	21(1)
C(19)	7265(3)	473(3)	5461(1)	24(1)
C(18)	6306(3)	510(3)	5704(1)	21(1)
C(17)	5348(2)	1344(3)	5475(1)	21(1)
C(16)	5348(2)	2151(3)	5001(1)	18(1)
C(15)	6314(2)	2133(3)	4758(1)	16(1)
C(22)	8533(3)	-70(3)	2967(1)	24(1)
C(23)	9315(2)	715(3)	3947(1)	22(1)
C(24)	10147(2)	1706(3)	3181(1)	28(1)
C(25)	7144(2)	3113(3)	2567(1)	19(1)
C(26)	6223(2)	1989(3)	2340(1)	22(1)

Table S20. Atomic coordinates ($x \ 10^4$) and equivalent isotropic displacement parameters (Å²x 10³) for **Y**_{CN}**P** ^t**Bu**₂·**AuCI**. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

C(27)	6521(3)	4542(3)	2598(1)	24(1)	
C(28)	7997(3)	3281(3)	2180(1)	27(1)	

Table S21. Anisotropic displacement parameters (Å² x 10³) for $Y_{CN}P^{t}Bu_{2}$ ·AuCI. The anisotropic displacement factor exponent takes the form: $-2\pi^{2} [h^{2}a^{.2}U^{11} + ... + 2 h k a \cdot b \cdot U^{12}]$.

	U ¹¹	U ²²	U ²²	U ²³	U ¹³	U ¹²
Au(1)	14(1)	14(1)	19(1)	1(1)	6(1)	0(1)
P(1)	14(1)	15(1)	15(1)	0(1)	5(1)	0(1)
P(2)	12(1)	14(1)	13(1)	0(1)	3(1)	0(1)
N(1)	20(1)	18(1)	22(1)	1(1)	5(1)	0(1)
CI(1)	18(1)	16(1)	32(1)	0(1)	7(1)	-2(1)
C(1)	14(1)	16(1)	16(1)	0(1)	4(1)	0(1)
C(2)	15(1)	18(1)	13(1)	1(1)	3(1)	3(1)
C(3)	15(1)	15(1)	16(1)	-1(1)	6(1)	1(1)
C(4)	17(1)	19(1)	20(1)	1(1)	3(1)	2(1)
C(5)	21(1)	16(1)	30(1)	2(1)	4(1)	0(1)
C(6)	21(1)	18(1)	27(1)	-5(1)	6(1)	-3(1)
C(7)	17(1)	26(1)	19(1)	-2(1)	1(1)	-2(1)
C(8)	19(1)	17(1)	18(1)	0(1)	3(1)	1(1)
C(9)	14(1)	15(1)	17(1)	1(1)	4(1)	0(1)
C(10)	15(1)	19(1)	19(1)	1(1)	5(1)	2(1)
C(11)	17(1)	22(1)	23(1)	1(1)	1(1)	-1(1)
C(12)	13(1)	24(1)	23(1)	6(1)	4(1)	2(1)
C(13)	18(1)	22(1)	21(1)	1(1)	8(1)	3(1)
C(14)	18(1)	19(1)	19(1)	0(1)	5(1)	2(1)
C(21)	17(1)	19(1)	22(1)	-2(1)	7(1)	2(1)
C(20)	20(1)	24(1)	19(1)	2(1)	6(1)	0(1)
C(19)	24(1)	24(1)	22(1)	3(1)	0(1)	-1(1)
C(18)	28(2)	20(1)	15(1)	1(1)	5(1)	-9(1)
C(17)	27(1)	18(1)	20(1)	-3(1)	12(1)	-5(1)
C(16)	20(1)	14(1)	20(1)	-2(1)	7(1)	-3(1)
C(15)	20(1)	16(1)	14(1)	0(1)	5(1)	-3(1)
C(22)	22(1)	21(1)	27(1)	-4(1)	3(1)	2(1)
C(23)	20(1)	20(1)	24(1)	1(1)	1(1)	4(1)
C(24)	18(1)	29(2)	39(2)	-2(1)	14(1)	1(1)
C(25)	20(1)	22(1)	16(1)	5(1)	5(1)	2(1)
C(26)	22(1)	26(1)	16(1)	-1(1)	0(1)	2(1)
C(27)	27(2)	21(1)	22(1)	4(1)	1(1)	4(1)
C(28)	28(2)	35(2)	20(1)	5(1)	11(1)	-1(1)

Figure S47 ORTEP Plot of (Y_{CN})₂PPh·AuCl. Ellipsoids are drawn at the 50% probability level.

Table S22. Atomic coordinates ($x \ 10^4$) and equivalent isotropic displacement parameters (Å²x 10^3) for (Y_{CN})₂PPh·AuCl. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

	Х	у	Z	U(eq)	
Au(1)	1599(1)	3951(1)	2527(1)	18(1)	
CI(1)	299(1)	5505(1)	2159(1)	35(1)	
P(1)	2928(1)	2501(1)	2982(1)	14(1)	
P(2)	2329(1)	2107(1)	1031(1)	15(1)	
P(3)	4415(1)	3753(1)	3615(1)	16(1)	
N(1)	4057(2)	-293(2)	2897(2)	26(1)	
N(2)	5805(2)	2291(2)	1839(2)	22(1)	
C(1)	3060(2)	1678(2)	2163(2)	16(1)	
C(2)	3610(2)	594(2)	2546(2)	18(1)	
C(3)	2859(2)	1264(2)	227(2)	18(1)	
C(4)	3808(2)	1429(2)	-376(2)	28(1)	
C(5)	4218(3)	789(2)	-1001(2)	32(1)	
C(6)	3677(3)	-11(2)	-1032(2)	27(1)	
C(7)	2740(2)	-177(2)	-431(2)	27(1)	
C(8)	2325(2)	454(2)	203(2)	24(1)	
C(9)	908(2)	2015(2)	1252(2)	19(1)	
C(10)	494(2)	1650(2)	2278(2)	22(1)	
C(12)	-1269(2)	1845(2)	1611(3)	27(1)	
C(11)	-595(2)	1564(2)	2457(2)	26(1)	

C(13)	-852(2)	2195(2)	588(2)	26(1)
C(14)	236(2)	2271(2)	408(2)	21(1)
C(15)	2441(2)	3493(2)	275(2)	16(1)
C(18)	2718(2)	5573(2)	-999(2)	24(1)
C(17)	1696(2)	5290(2)	-866(2)	24(1)
C(16)	1552(2)	4259(2)	-234(2)	21(1)
C(19)	3596(2)	4824(2)	-492(2)	21(1)
C(20)	3467(2)	3783(2)	144(2)	18(1)
C(21)	4222(2)	2865(2)	2984(2)	16(1)
C(22)	5089(2)	2547(2)	2361(2)	17(1)
C(23)	4144(2)	5176(2)	2836(2)	20(1)
C(24)	3873(2)	5485(2)	1788(2)	21(1)
C(25)	3694(2)	6579(2)	1176(2)	26(1)
C(26)	3780(2)	7357(2)	1619(2)	29(1)
C(27)	4024(2)	7061(2)	2672(2)	29(1)
C(28)	4209(2)	5967(2)	3286(2)	26(1)
C(29)	5827(2)	3407(2)	3954(2)	21(1)
C(30)	6526(2)	4152(2)	3567(2)	25(1)
C(31)	7629(2)	3812(3)	3756(3)	31(1)
C(32)	8026(2)	2751(3)	4346(3)	34(1)
C(33)	7335(3)	2006(2)	4744(3)	32(1)
C(34)	6239(2)	2325(2)	4535(2)	25(1)
C(35)	3514(2)	3653(2)	4753(2)	20(1)
C(36)	2496(2)	4337(2)	4622(2)	26(1)
C(37)	1747(3)	4212(3)	5461(3)	35(1)
C(38)	2013(3)	3422(3)	6427(3)	40(1)
C(39)	3020(3)	2762(3)	6560(2)	36(1)
C(40)	3773(3)	2868(2)	5727(2)	26(1)
C(41)	2706(2)	1614(2)	4315(2)	18(1)
C(42)	1668(2)	1681(2)	4780(2)	24(1)
C(43)	1500(3)	1020(3)	5814(2)	31(1)
C(44)	2364(3)	313(2)	6381(2)	29(1)
C(45)	3390(2)	230(2)	5921(2)	24(1)
C(46)	3562(2)	871(2)	4886(2)	20(1)
C1A1	990(12)	7900(13)	2049(9)	51(4)
CI2A1	-59(7)	9018(8)	1565(8)	51(2)
CI1A1	1181(4)	7460(4)	3393(3)	90(2)
C1B1	761(6)	7969(7)	2460(7)	53(2)
CI1B1	1486(1)	8740(1)	2885(1)	42(1)
Cl2B1	-281(4)	8824(4)	1633(3)	51(1)

Table S23. Anisotropic displacement parameters (Å² x 10³) for (Y_{CN})₂PPh·AuCI. The anisotropic displacement factor exponent takes the form: $-2\pi^2$ [h²a·²U¹¹ + ... + 2 h k a·b·U¹²].

	U ¹¹	U ²²	U ²²	U ²³	U ¹³	U ¹²
Au(1)	18(1)	16(1)	18(1)	-7(1)	-3(1)	0(1)
CI(1)	34(1)	30(1)	35(1)	-12(1)	-12(1)	16(1)
P(1)	16(1)	13(1)	14(1)	-4(1)	0(1)	-3(1)
P(2)	17(1)	14(1)	14(1)	-4(1)	-1(1)	-4(1)
P(3)	20(1)	14(1)	15(1)	-5(1)	-2(1)	-4(1)
N(1)	36(1)	18(1)	21(1)	-6(1)	-3(1)	1(1)
N(2)	21(1)	24(1)	25(1)	-11(1)	1(1)	-6(1)
C(1)	19(1)	15(1)	14(1)	-5(1)	-2(1)	-4(1)
C(2)	22(1)	20(1)	15(1)	-6(1)	2(1)	-8(1)
C(3)	22(1)	16(1)	15(1)	-5(1)	-4(1)	-1(1)
C(4)	32(1)	30(1)	31(2)	-18(1)	8(1)	-13(1)
C(5)	37(2)	32(2)	32(2)	-18(1)	12(1)	-11(1)
C(6)	41(2)	22(1)	18(1)	-9(1)	-4(1)	0(1)
C(7)	36(2)	20(1)	29(1)	-11(1)	-8(1)	-6(1)
C(8)	27(1)	20(1)	26(1)	-9(1)	-2(1)	-6(1)
C(9)	18(1)	16(1)	23(1)	-7(1)	0(1)	-5(1)
C(10)	26(1)	21(1)	23(1)	-8(1)	1(1)	-9(1)
C(12)	18(1)	18(1)	45(2)	-11(1)	1(1)	-6(1)
C(11)	27(1)	24(1)	28(1)	-10(1)	8(1)	-11(1)
C(13)	22(1)	20(1)	36(2)	-6(1)	-7(1)	-6(1)
C(14)	23(1)	18(1)	23(1)	-4(1)	-4(1)	-5(1)
C(15)	21(1)	15(1)	13(1)	-4(1)	0(1)	-5(1)
C(18)	29(1)	18(1)	23(1)	-4(1)	1(1)	-8(1)

C(17)	25(1)	18(1)	26(1)	-2(1)	-4(1)	-2(1)
C(16)	19(1)	18(1)	25(1)	-6(1)	-2(1)	-6(1)
C(19)	21(1)	22(1)	21(1)	-8(1)	2(1)	-8(1)
C(20)	21(1)	18(1)	16(1)	-6(1)	-1(1)	-4(1)
C(21)	10(1)	10(1) 14(1)	17(1)	-5(1)	0(1)	-6(1)
C(22)	21(1)	13(1)	16(1)	-3(1)	-5(1)	-0(1) -4(1)
C(22)	27(1)	16(1)	21(1)	-5(1)	-3(1) -2(1)	-4(1)
C(23)	22(1)	21(1)	21(1) 20(1)	-3(1)	$\frac{-2(1)}{1(1)}$	-4(1)
C(24)	27(1)	21(1) 24(1)	20(1)	-7(1)	-1(1)	-4(1)
C(25)	27(1)	$\frac{24(1)}{17(1)}$	26(2)	-3(1)	-3(1)	-4(1)
C(20)	29(1)	10(1)	30(2)	-1(1)	-3(1)	-3(1)
C(27)	34(2)	10(1)	37(Z) 25(1)	-10(1)	-0(1) 6(1)	-4(1) 5(1)
C(20)	34(Z) 22(1)	20(1)	20(1)	-7(1)	-0(1)	-3(1)
C(29)	22(1)	24(1)	20(1)	-11(1)	-4(1)	-4(1)
C(30)	27(1)	20(1)	25(1)	-13(1)	-2(1)	-o(1) 12(1)
C(31)	20(1)	39(2)	33(2)	-19(1)	0(1)	-13(1)
C(32)	22(1)	40(Z) 20(1)	41(Z) 26(2)	-20(1)	-0(1)	-2(1)
C(33)	3Z(Z)	29(1)	30(2)	-14(1)	-12(1)	3(1)
C(34)	27(1)	23(1)	28(1)	-9(1)	-6(1)	-4(1)
C(35)	26(1)	20(1)	19(1)	-10(1)	1(1)	-7(1)
C(36)	28(1)	26(1)	27(1)	-15(1)	0(1)	-4(1)
C(37)	32(2)	40(2)	43(2)	-26(1)	10(1)	-9(1)
C(38)	49(2)	41(2)	36(2)	-22(1)	21(2)	-20(2)
C(39)	58(2)	31(2)	22(1)	-10(1)	9(1)	-17(1)
C(40)	38(2)	22(1)	20(1)	-8(1)	0(1)	-8(1)
C(41)	24(1)	17(1)	14(1)	-6(1)	2(1)	-7(1)
C(42)	23(1)	28(1)	23(1)	-9(1)	1(1)	-7(1)
C(43)	32(2)	37(2)	24(1)	-8(1)	9(1)	-15(1)
C(44)	45(2)	27(1)	16(1)	-2(1)	3(1)	-17(1)
C(45)	35(2)	18(1)	18(1)	-2(1)	-4(1)	-7(1)
C(46)	24(1)	19(1)	18(1)	-5(1)	0(1)	-5(1)
C1A1	40(7)	74(9)	44(8)	-39(8)	-24(6)	20(6)
CI2A1	44(3)	54(3)	51(2)	-18(2)	6(2)	-2(2)
CI1A1	83(3)	126(4)	53(2)	-48(2)	-38(2)	52(2)
C1B1	53(4)	58(4)	53(5)	-26(4)	-14(4)	-3(3)
CI1B1	39(1)	50(1)	40(1)	-20(1)	-6(1)	-6(1)
CI2B1	56(2)	63(2)	38(2)	-28(1)	-20(2)	11(1)

3.3.3 Crystal Structure Determination of $(Y_{CN})_2 PCy \cdot AuCI$

Figure S48 ORTEP Plot of (Ycn)₂PCy·AuCl. Ellipsoids are drawn at the 50% probability level.

			_	11(
	X	у	Z	U(eq)
Au(1)	6214(1)	6838(1)	7410(1)	20(1)
Cl(1)	7522(1)	6908(1)	7461(1)	33(1)
N(1)	3078(2)	5670(2)	6683(2)	27(1)
N(2)	3584(2)	5873(2)	8747(2)	26(1)
P(1)	4940(1)	6893(1)	7375(1)	16(1)
P(2)	5025(1)	4565(1)	7109(1)	18(1)
P(3)	4891(1)	8126(1)	8890(1)	18(1)
C(1)	4518(2)	5715(2)	7054(2)	20(1)
C(2)	3722(2)	5684(2)	6859(2)	20(1)
C(2)	1327(2)	3534(2)	6952(2)	20(1)
C(4)	3724(2)	3/18(3)	7/30(2)	27(1)
C(5)	3124(2) 3180(2)	2660(3)	7281(2)	20(1)
C(3)	3100(2)	2000(3)	1201(Z) 6652(2)	30(1)
	3205(2)	2022(3)	0000(2)	29(1)
C(7)	3793(2)	2145(3)	6172(2)	29(1)
C(8)	4355(2)	2898(3)	6315(2)	24(1)
C(9)	5577(2)	4390(2)	8001(2)	22(1)
C(10)	5197(2)	4259(3)	8667(2)	24(1)
C(11)	5617(2)	4115(3)	9352(2)	27(1)
C(12)	6412(2)	4095(3)	9380(2)	26(1)
C(13)	6789(2)	4254(3)	8722(2)	29(1)
C(14)	6369(2)	4414(3)	8035(2)	26(1)
C(15)	5693(2)	4393(2)	6380(2)	20(1)
C(16)	6197(2)	3562(3)	6402(2)	24(1)
C(17)	6669(2)	3401(3)	5816(2)	27(1)
C(18)	6627(2)	4059(3)	5194(2)	27(1)
C(19)	6120(2)	4888(3)	5169(2)	25(1)
C(20)	5657(2)	5061(3)	5765(2)	20(1)
C(20)	4564(2)	7159(2)	9775(2)	22(1)
C(21)	4004(2)	6462(2)	0273(2)	20(1)
C(22)	4020(2)	0403(Z)	0040(2)	20(1)
O(23)	4120(2)	0440(Z)	9460(Z)	21(1)
C(24)	4219(2)	8405(2)	10269(2)	22(1)
C(25)	3598(2)	8567(3)	10702(2)	28(1)
C(26)	2889(2)	8784(3)	10360(2)	28(1)
C(27)	2786(2)	8835(3)	9577(2)	28(1)
C(28)	3399(2)	8652(3)	9137(2)	24(1)
C(29)	5705(2)	7817(3)	9522(2)	19(1)
C(30)	5958(2)	6805(2)	9593(2)	22(1)
C(31)	6534(2)	6559(3)	10143(2)	28(1)
C(32)	6847(2)	7331(3)	10612(2)	27(1)
C(33)	6606(2)	8342(3)	10532(2)	24(1)
C(34)	6039(2)	8600(3)	9985(2)	23(1)
C(35)	5190(2)	9231(2)	8362(2)	22(1)
C(36)	4687(2)	10041(3)	8157(2)	27(1)
C(37)	1007(2)	10700(3)	7671(2)	3/(1)
C(38)	5624(2)	10762(3)	7370(2)	36(1)
C(30)	5024(2) 6120(2)	10702(3)	7502(2)	30(1)
C(39)	5026(2)	9913(3) 0007(2)	1 J 3 3 (Z) 9100(2)	32(1)
C(40)	0920(Z)	9227(3)	0100(2)	20(1)
C(41)	4619(2)	1957(2)	0/20(2)	20(1)
C(42)	3774(2)	8250(3)	6739(2)	23(1)
C(43)	3606(2)	9212(3)	6256(2)	28(1)
C(44)	3829(2)	9052(3)	5447(2)	33(1)
C(45)	4661(2)	8722(3)	5425(2)	33(1)
C(46)	4833(2)	7757(3)	5914(2)	26(1)

Table S24. Atomic coordinates ($x \ 10^4$) and equivalent isotropic displacement parameters (Å²x 10³) for (Y_{CN})₂PCy-AuCl. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

Table S25. Anisotropic displacement parameters (Å² x 10³) for $(Y_{CN})_2 PCy \cdot AuCI$. The anisotropic displacement factor exponent takes the form: $-2\pi^2 [h^2 a^{.2} U^{11} + ... + 2 h k a \cdot b \cdot U^{12}]$.

	U ¹¹	U ²²	U ²²	U ²³	U ¹³	U ¹²
Au(1)	18(1)	19(1)	22(1)	-2(1)	2(1)	1(1)
CI(1)	17(1)	34(1)	47(1)	-7(1)	3(1)	0(1)
N(1)	26(1)	25(1)	29(1)	-1(1)	-6(1)	1(1)
N(2)	31(1)	24(1)	24(1)	1(1)	2(1)	-4(1)

P(1)	17(1)	16(1)	16(1)	-1(1)	0(1)	0(1)
P(2)	21(1)	16(1)	17(1)	0(1)	1(1)	0(1)
P(3)	20(1)	16(1)	17(1)	-1(1)	-1(1)	1(1)
C(1)	22(1)	17(1)	20(1)	-1(1)	1(1)	2(1)
C(2)	26(2)	16(1)	18(1)	2(1)	0(1)	-3(1)
C(3)	27(2)	28(2)	21(2)	2(1)	-2(1)	2(1)
C(5)	25(2)	32(2)	33(2)	4(2)	2(1)	-2(1)
C(6)	25(2)	21(2)	39(2)	3(1)	-5(1)	-3(1)
C(7)	32(2)	23(2)	31(2)	-6(1)	-3(1)	0(1)
C(8)	27(2)	20(2)	26(2)	1(1)	1(1)	2(1)
C(9)	27(2)	18(1)	20(1)	0(1)	-1(1)	4(1)
C(10)	28(2)	20(2)	24(2)	1(1)	2(1)	2(1)
C(11)	40(2)	21(2)	21(2)	2(1)	2(1)	0(1)
C(12)	35(2)	21(2)	22(2)	1(1)	-4(1)	1(1)
C(13)	25(2)	34(2)	28(2)	-2(1)	-4(1)	3(1)
C(14)	27(2)	29(2)	21(2)	-1(1)	2(1)	-1(1)
C(15)	21(1) 26(2)	20(2)	20(1) 24(2)	-3(1)	2(1)	-3(1)
C(10) C(17)	28(2)	26(2)	27(2)	-4(1)	1(1)	3(1)
C(18)	24(2)	33(2)	24(2)	-4(1)	5(1)	-1(1)
C(19)	24(2)	30(2)	20(2)	5(1)	1(1)	-2(1)
C(20)	21(1)	22(2)	24(2)	-2(1)	0(1)	-1(1)
C(21)	23(1)	19(1)	15(1)	-3(1)	-1(1)	-2(1)
C(22)	25(2)	19(2)	15(1)	-2(1)	1(1)	3(1)
C(23)	25(2)	16(1)	22(2)	-5(1)	3(1)	1(1)
C(24)	25(2)	17(1)	23(2)	0(1)	0(1)	-1(1)
C(25)	36(2)	25(2)	22(2)	-3(1)	3(1)	0(1)
C(26)	28(2)	25(2)	32(2)	-3(1)	7(1)	2(1)
C(28)	24(2) 27(2)	21(2)	32(Z) 21(2)	-4(1) -4(1)	-1(1)	3(1)
C(20) C(29)	20(1)	24(2)	18(1)	-4(1)	0(1)	-2(1)
C(30)	24(2)	21(2)	21(2)	-1(1)	0(1)	-1(1)
C(31)	28(2)	25(2)	30(2)	0(1)	-5(1)	4(1)
C(32)	21(2)	34(2)	23(2)	3(1)	-3(1)	1(1)
C(33)	22(2)	27(2)	23(2)	-4(1)	0(1)	-3(1)
C(34)	23(2)	21(2)	24(2)	-2(1)	-2(1)	-1(1)
C(35)	30(2)	14(1)	21(1)	-3(1)	-4(1)	-2(1)
C(36)	29(2)	23(2)	28(2)	-1(1)	-7(1)	0(1)
C(37)	39(2)	20(2)	40(2)	6(1)	-12(2)	1(1)
C(30)	47(Z) 37(2)	20(2)	30(Z) 31(2)	9(Z) 5(2)	-7(Z) -1(1)	-14(Z) -12(2)
C(39)	28(2)	22(2)	26(2)	-1(1)	-4(1)	-12(2) -4(1)
C(40)	21(2)	17(1)	22(2)	1(1)	-2(1)	-2(1)
C(42)	23(2)	20(2)	26(2)	2(1)	0(1)	1(1)
C(43)	29(2)	21(2)	31(2)	1(1)	-6(1)	4(1)
C(44)	46(2)́	26(2)	26(2)	4(1)́	-7(2)́	1(2)
C(45)	46(2)	27(2)	26(2)	6(1)	3(2)	2(2)
C(46)	34(2)	21(2)	23(2)	2(1)	2(1)	2(1)

3.3.4 Crystal Structure Determination of $(Y_{CN})_2 P^t Bu \cdot AuCI$

Figure S49 ORTEP Plot of (Y_{CN})₂P^tBu·AuCl. Ellipsoids are drawn at the 50% probability level.

Table S26. Atomic coordinates ($x \ 10^4$) and equivalent isotropic displacement parameters (Å²x 10³) for (Y_{CN})₂P^tBu·AuCI. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

	Х	У	Z	U(eq)
Au(1)	4082(1)	3171(1)	602(1)	14(1)
CI(1)	5081(1)	2786(1)	-429(1)	19(1)
P(1)	2896(1)	3462(1)	1581(1)	14(1)
P(2)	5520(1)	3748(1)	3862(1)	16(1)
P(3)	1798(1)	3993(1)	-787(1)	16(1)
N(1)	2440(3)	4157(1)	3937(3)	27(1)
N(2)	-585(3)	3910(1)	771(3)	30(1)
C(1)	3805(3)	3741(1)	2989(3)	17(1)
C(2)	3049(3)	3969(1)	3500(3)	19(1)
C(3)	5926(3)	3578(1)	5470(3)	18(1)
C(4)	4925(3)	3436(1)	5836(3)	21(1)
C(5)	5249(4)	3285(1)	7046(3)	23(1)
C(6)	6571(4)	3275(1)	7899(3)	24(1)
C(7)	7584(4)	3414(1)	7545(3)	23(1)
C(8)	7267(3)	3565(1)	6335(3)	23(1)
C(9)	6423(3)	3429(1)	3220(3)	17(1)
C(10)	6652(3)	3038(1)	3653(3)	19(1)
C(11)	7340(3)	2786(1)	3169(4)	24(1)
C(12)	7826(3)	2923(1)	2288(4)	26(1)
C(13)	7618(3)	3310(1)	1878(3)	24(1)
C(14)	6901(3)	3565(1)	2326(3)	21(1)
C(15)	6268(4)	4238(1)	4024(3)	21(1)
C(16)	5489(4)	4574(1)	3915(4)	26(1)
C(17)	6081(4)	4946(1)	4095(4)	34(1)
C(18)	7443(5)	4985(1)	4379(4)	36(1)
C(19)	8213(4)	4651(1)	4470(4)	34(1)
C(20)	7640(4)	4279(1)	4305(4)	27(1)
C(21)	1629(3)	3774(1)	511(3)	17(1)
C(22)	424(3)	3853(1)	670(3)	21(1)
C(23)	3515(3)	4140(1)	-443(3)	20(1)
C(24)	4162(4)	4389(1)	582(3)	23(1)
C(25)	5450(4)	4525(1)	817(4)	28(1)
C(26)	6095(4)	4404(1)	48(4)	32(1)

C(27)	5471(4)	4149(1)	-950(4)	35(1)	
C(28)	4174(4)	4018(1)	-1212(4)	29(1)	
C(29)	1261(3)	3698(1)	-2225(3)	18(1)	
C(30)	1120(4)	3878(1)	-3365(3)	25(1)	
C(31)	699(4)	3658(1)	-4476(4)	26(1)	
C(32)	395(4)	3261(1)	-4453(3)	24(1)	
C(33)	531(4)	3082(1)	-3320(3)	23(1)	
C(34)	968(3)	3299(1)	-2204(3)	19(1)	
C(35)	739(4)	4426(1)	-1274(3)	21(1)	
C(36)	1254(4)	4801(1)	-1245(4)	37(1)	
C(37)	392(5)	5123(1)	-1654(5)	51(1)	
C(38)	-979(5)	5069(1)	-2067(5)	45(1)	
C(39)	-1499(4)	4695(1)	-2137(4)	39(1)	
C(40)	-647(4)	4373(1)	-1745(4)	31(1)	
C(41)	2038(3)	3047(1)	2065(3)	18(1)	
C(42)	3133(4)	2752(1)	2818(3)	23(1)	
C(43)	1316(3)	3178(1)	2913(3)	20(1)	
C(44)	1037(4)	2843(1)	878(3)	24(1)	
Au(1)	4082(1)	3171(1)	602(1)	14(1)	
CI(1)	5081(1)	2786(1)	-429(1)	19(1)	

Table S27. Anisotropic displacement parameters ($\mathring{A}^2 \times 10^3$) for **(Y**_{CN})₂**P^tBu·AuCI**. The anisotropic displacement factor exponent takes the form: $-2\pi^2 [h^2 a^{\cdot 2} U^{11} + ... + 2 h k a \cdot b \cdot U^{12}]$.

	1 111	1 122	1 122	1 123	1.113	1.112
A(4)				0(1)	<u> </u>	0(1)
Au(1)	14(1)	13(1)	15(1)	0(1)	5(1)	0(1)
	19(1)	21(1)	20(1)	-2(1)	11(1)	0(1)
P(1)	14(1)	12(1)	16(1)	0(1)	6(1)	0(1)
P(2)	16(1)	13(1)	16(1)	0(1)	4(1)	-2(1)
P(3)	17(1)	12(1)	18(1)	0(1)	4(1)	-1(1)
N(1)	27(2)	20(1)	33(2)	-4(1)	12(1)	2(1)
N(2)	24(2)	Z7(Z)	43(2)	10(1)	16(2)	0(1)
C(1)	10(2)	10(1)	20(2)	-2(1)	O(1)	-2(1)
C(2)	10(2)	16(2)	19(2)	0(1)	Z(1) = E(1)	-2(1)
C(3)	21(2) 17(2)	10(2)	10(2)	0(1)	D(1)	-1(1)
C(4)	17(2)	20(2)	24(2)	1(1)	0(1)	1(1)
C(5)	20(2)	20(2)	21(Z) 15(2)	2(1)	12(2)	-1(1)
C(0)	17(2)	20(2)	15(2)	2(1)	0(2)	2(1)
C(r)	17(2)	29(2)	10(2)	2(1)	6(1)	2(1)
C(0)	12(1)	20(2)	23(2)	(1)	2(1)	-3(1)
C(3)	14(2)	10(2)	19(2)	-1(1)	2(1)	-1(1)
C(10)	12(2)	19(2)	31(2)	-3(1)	-1(1)	-1(1)
C(12)	12(2)	32(2)	31(2)	-3(1)	-1(1) 3(1)	1(1)
C(12)	10(2)	32(2)	20(2)	-11(2)	7(1)	-3(1)
C(13)	16(2)	24(2)	20(2)	2(1)	5(1)	-3(1)
C(15)	24(2)	17(2)	19(2)	0(1)	5(1)	-4(1) -4(1)
C(16)	30(2)	20(2)	29(2)	-4(1)	14(2)	-3(1)
C(17)	46(2)	19(2)	39(2)	-6(2)	20(2)	-5(2)
C(18)	49(3)	22(2)	37(2)	-8(2)	18(2)	-17(2)
C(19)	29(2)	31(2)	37(2)	-2(2)	9(2)	-13(2)
C(20)	23(2)	26(2)	28(2)	$1(1)^{-1}$	3(2)	-4(1)
C(21)	15(2)	14(1)	20(2)	2(1)	5(1)	1(1)
C(22)	22(2)	13(2)	26(2)	3(1)	7(1)	1(1)
C(23)	19(2)	16(2)	24(2)	4(1)	6(1)	-2(1)
C(24)	25(2)	18(2)	24(2)	4(1)	7(1)	-2(1)
C(25)	26(2)	21(2)	31(2)	4(1)	4(2)	-7(1)́
C(26)	22(2)	24(2)	47(2)	7(2)	11(2)	-4(1)
C(27)	29(2)	26(2)	55(3)	-5(2)	23(2)	-4(2)
C(28)	27(2)	21(2)	40(2)	-6(2)	15(2)	-4(1)
C(29)	17(2)	18(2)	18(2)	1(1)	4(1)	1(1)
C(30)	30(2)	19(2)	26(2)	1(1)	12(2)	-2(1)
C(31)	26(2)	29(2)	23(2)	3(1)	12(2)	1(2)
C(32)	24(2)	28(2)	20(2)	-5(1)	7(2)	0(1)
C(33)	24(2)	18(2)	26(2)	-5(1)	8(2)	-3(1)
C(34)	20(2)	17(2)	18(2)	1(1)	6(1)	0(1)
C(35)	23(2)	16(2)	18(2)	1(1)	3(1)	4(1)

C(36)	31(2)	18(2)	45(2)	3(2)	-1(2)	-2(2)	
C(37)	48(3)	18(2)	65(3)	2(2)	-2(2)	3(2)	
C(38)	41(3)	28(2)	51(3)	4(2)	2(2)	18(2)	
C(39)	27(2)	36(2)	43(2)	6(2)	4(2)	8(2)	
C(40)	26(2)	22(2)	35(2)	4(2)	2(2)	2(2)	
C(41)	18(2)	13(1)	21(2)	0(1)	6(1)	-3(1)	
C(42)	24(2)	17(2)	27(2)	4(1)	11(2)	0(1)	
C(43)	16(2)	23(2)	23(2)	0(1)	9(1)	-3(1)	
C(44)	29(2)	20(2)	23(2)	-3(1)	11(2)	-8(1)	

3.3.5 Crystal Structure Determination of (Y_{CN})₂PCy·Rh(CO)(acac)

Figure S50 ORTEP Plot of (Y_{CN})₂PCy·Rh(CO)(acac). Ellipsoids are drawn at the 50% probability level.

	Х	У	Z	U(eq)
Rh(1)	2444(1)	1877(1)	3891(1)	16(1)
P(1)	4022(1)	2536(1)	4128(1)	15(1)
P(2)	5802(1)	1433(1)	4132(1)	16(1)
P(3)	2678(1)	3457(1)	3177(1)	16(1)
O(1)	1786(2)	1963(1)	5011(1)	42(1)
O(2)	963(1)	1268(1)	3643(1)	23(1)
O(3)	2883(1)	1756(1)	3102(1)	20(1)
N(1)	7472(2)	2860(1)	4576(1)	25(1)
N(2)	6007(2)	3353(1)	3263(1)	23(1)
C(1)	5533(2)	2191(1)	4239(1)	17(1)
C(2)	6604(2)	2556(1)	4419(1)	18(1)
C(3)	7338(2)	1258(1)	4568(1)	20(1)
C(4)	7618(2)	1419(1)	5146(1)	25(1)
C(5)	8779(2)	1285(1)	5490(1)	29(1)
C(6)	9672(2)	1001(1)	5255(1)	33(1)
C(7)	9420(2)	856(1)	4685(1)	35(1)
C(8)	8245(2)	980(1)	4340(1)	27(1)
C(9)	4684(2)	931(1)	4345(1)	19(1)
C(10)	3849(2)	580(1)	3951(1)	23(1)
C(11)	3002(2)	201(1)	4134(1)	27(1)
C(12)	2977(2)	177(1)́	4707(1)	28(1)
C(13)	3809(2)	523(1)	5100(1)	27(1)
C(14)	4662(2)	897(1)	4923(1)	24(1)
C(15)	5883(2)	1248(1)	3404(1)	18(1)
C(16)	5959(2)	653(1)	3208(1)	24(1)
C(17)	6110(2)	553(1)	2659(1)	29(1)
C(18)	6223(2)	1042(1)	2307(1)	29(1)
C(19)	6160(2)	1630(1)	2500(1)	26(1)
C(20)	5976(2)	1734(1)	3046(1)	21(1)
C(21)	3972(2)	3072(1)	3553(1)	17(1)
C(22)	5089(2)	3233(1)	3401(1)	18(1)
C(23)	2571(2)	4229(1)	3432(1)	19(1)
C(24)	3661(2)	4502(1)	3738(1)	22(1)
C(25)	3621(2)	5087(1)	3950(1)	26(1)́
C(26)	2500(2)	5399(1)	3861(1)	28(1)
C(27)	1419(2)	5133(1)	3551(1)	29(1)
C(28)	1449(2)	4548(1)	3336(1)	25(1)
C(29)	2807(2)	3532(1)	2444(1)	20(1)
C(30)	2341(2)	4040(1)	2116(1)	24(1)
C(31)	2425(2)	4072(1)	1550(1)	29(1)
C(32)	2962(2)	3602(1)	1306(1)	30(1)
C(33)	3434(2)	3098(1)	1632(1)	26(1)
C(34)	3363(2)	3062(1)	2198(1)	23(1)
C(35)	1204(2)	3100(1)	3175(1)	21(1)
C(36)	575(2)	3217(1)	3608(1)	25(1)
C(37)	-549(2)	2932(1)	3604(1)	31(1)
C(38)	-1052(2)	2539(1)	3167(1)	36(1)
C(39)	-453(2)	2425(1)	2729(1)	33(1)
C(40)	678(2)	2707(1)	2729(1)	25(1)
C(41)	4252(2)	3028(1)	4772(1)	17(1)
C(42)	3102(2)	3413(1)	4790(1)	19(1)
C(43)	3378(2)	3870(1)	5282(1)	23(1)
C(44)	3867(2)	3550(1)	5852(1)	24(1)
C(45)	5000(2)	3158(1)	5830(1)	22(1)
C(46)	4718(2)	2696(1)	5342(1)	20(1)
C(47)	2070(2)	1947(1)	4576(1)	27(1)
C(48)	-391(2)	546(1)	3111(1)	41(1)
C(49)	711(2)	973(1)	3180(1)	26(1)
C(50)	1338(2)	1009(1)	2736(1)	26(1)
C(51)	2341(2)	1389(1)	2714(1)	21(1)
C(52)	2852(2)	1370(1)	2184(1)	27(1)
CÌ11	6779(1)	3217(1)	1664(1)	45(1)
CI21	5891(1)	4345(1)	2041(1)	41(1)
Cl31	8534(1)́	4106(Ì1)	2241(1)́	50(1)́

Table S28. Atomic coordinates ($x \ 10^4$) and equivalent isotropic displacement parameters (Å²x 10³) for (Y_{CN})₂PCy·Rh(CO)(acac). U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

C11	7051(2)	3784(1)	2195(1)	28(1)	
CI12	6950(1)	4847(1)	3540(1)	52(1)	
Cl22	9238(1)	4498(1)	4320(1)	58(1)	
CI32	6901(1)	4432(1)	4670(1)	37(1)	
C12	7633(2)	4347(1)	4098(1)	32(1)	
CI1A3	56(1)	3718(1)	5680(1)	49(1)	
CI2A3	788(1)	2515(1)	6103(1)	33(1)	
CI3A3	-1681(1)	2948(1)	6096(1)	38(1)	
C1A3	-455(3)	2963(2)	5741(1)	29(1)	
CI1B3	353(10)	3873(6)	5835(5)	68(3)	
CI2B3	495(6)	2662(3)	5494(4)	76(3)	
CI3B3	-1236(12)	3009(6)	6254(5)	82(3)	
C1B3	-446(17)	3197(9)	5674(8)	21(5)	

Table S29. Anisotropic displacement parameters (Å² x 10³) for (Y_{CN})₂PCy·Rh(CO)(acac). The anisotropic displacement factor exponent takes the form: $-2\pi^2 [h^2a^{-2}U^{11} + ... + 2h k a \cdot b \cdot U^{12}]$.

	U ¹¹	U ²²	U ²²	U ²³	U ¹³	U ¹²
Rh(1)	18(1)	15(1)	15(1)	-1(1)	3(1)	-3(1)
P(1)	17(1)	13(1)	12(1)	0(1)	3(1)	-2(1)
P(2)	18(1)	14(1)	15(1)	0(1)	2(1)	0(1)
P(3)	18(1)	15(1)	14(1)	1(1)	2(1)	-1(1)
O(1)	54(1)	56(1)	21(1)	-8(1)	20(1)	-27(1)
O(2)	22(1)	24(1)	25(1)	-5(1)	6(1)	-7(1)
O(3)	21(1)	20(1)	17(1)	-4(1)	3(1)	-3(1)
N(1)	24(1)	22(1)	27(1)	-1(1)	2(1)	-3(1)
N(2)	24(1)	22(1)	23(1)	5(1)	7(1)	-1(1)
C(1)	20(1)	15(1)	15(1)	0(1)	3(1)	-1(1)
C(2)	22(1)	17(1)	16(1)	1(1)	4(1)	2(1)
C(3)	20(1)	17(1)	20(1)	4(1)	1(1)	-2(1)
C(4)	28(1)	21(1)	23(1)	1(1)	1(1)	0(1)
C(5)	32(1)	27(1)	24(1)	4(1)	-5(1)	-4(1)
	21(1)	38(1)	34(1)	TT(T) 7(4)	-4(1)	-2(1)
C(7)	21(1)	49(1)	34(1)	7(1)	7(1)	6(1) 2(1)
	23(1)	30(1)	22(1)	3(1)	4(1) C(1)	2(1)
C(9)	22(1)	14(1)	22(1)	2(1)	0(1)	∠(I) 1(1)
C(10)	24(1)	19(1)	24(1)	2(1)	4(1)	-1(1)
C(11)	23(1) 27(1)	20(1)	33(1)	$\frac{2(1)}{7(1)}$	4(1) 15(1)	-3(1)
C(12)	37(1)	21(1)	$\frac{42(1)}{28(1)}$	4(1)	16(1)	4(1)
C(13)	31(1)	18(1)	23(1)	-(1)	8(1)	$\frac{1}{1}$
C(15)	17(1)	20(1)	17(1)	-2(1)	2(1)	-1(1)
C(16)	23(1)	20(1)	26(1)	-2(1)	3(1)	2(1)
C(17)	28(1)	28(1)	29(1)	-11(1)	4(1)	5(1)
C(18)	24(1)	42(1)	20(1)	-7(1)	5(1)	4(1)
C(19)	25(1)	33(1)	20(1)	1(1)	5(1)	-3(1)
C(20)	21(1)	22(1)	19(1)	-2(1)	3(1)	-2(1)
C(21)	18(1)	17(1)	15(1)	1(1)	3(1)	-1(1)
C(22)	22(1)	15(1)	15(1)	2(1)	1(1)	1(1)
C(23)	25(1)	17(1)	16(1)	2(1)	5(1)	0(1)
C(24)	23(1)	21(1)	22(1)	0(1)	4(1)	-1(1)
C(25)	30(1)	20(1)	28(1)	-2(1)	5(1)	-5(1)
C(26)	40(1)	18(1)	28(1)	-1(1)	12(1)	1(1)
C(27)	32(1)	24(1)	32(1)	2(1)	7(1)	7(1)
C(28)	24(1)	23(1)	26(1)	0(1)	2(1)	2(1)
C(29)	21(1)	20(1)	16(1)	0(1)	1(1)	-2(1)
C(30)	25(1)	22(1)	21(1)	2(1)	1(1)	-2(1)
C(31)	35(1)	26(1)	21(1)	5(1)	-3(1)	-6(1)
C(32)	38(1)	34(1)	16(1)	-1(1)	3(1)	-13(1)
C(33)	31(1)	28(1)	20(1)	-6(1)	7(1)	-6(1)
C(34)	26(1)	22(1)	19(1)	0(1)	2(1)	-3(1)
C(35)	18(1)	19(1)	22(1)	3(1)	1(1)	0(1)
C(30)	∠ I (I) 22(1)	∠9(1) 25(1)	∠⊃(1) 29(1)	S(1) E(1)	4(1) 10(1)	-1(1)
C(37)	∠3(1) 10(1)	33(1) 25(1)	30(1) 52(2)	D(1) D(1)	10(1) 6(1)	$\frac{1}{7(1)}$
C(30)	19(1) 24(1)	30(1) 20(1)	ວວ(∠) ⊿3(1)	3(1) -6(1)	0(1) -2(1)	-7(1) -5(1)
C(39)	∠ 1 (1) 22(1)	∠∋(1) 23(1)	43(1) 20(1)	-0(1)	$\frac{-2(1)}{1(1)}$	-3(1)
C(41)	22(1)	$\frac{23(1)}{16(1)}$	23(1) 15(1)	-2(1)	4(1)	-2(1)
U ())			10(1)	-(')		-(')

• () • •						
C(42)	21(1)	19(1)	17(1)	-2(1)	4(1)	0(1)
C(43)	27(1)	20(1)	23(1)	-4(1)	7(1)	0(1)
C(44)	29(1)	26(1)	17(1)	-5(1)	7(1)	-1(1)
C(45)	26(1)	24(1)	16(1)	-3(1)	2(1)	-2(1)
C(46)	25(1)	20(1)	14(1)	0(1)	4(1)	0(1)
C(47)	27(1)	23(1)	27(1)	0(1)	0(1)	-13(1)
C(48)	36(1)	51(2)	40(1)	-22(1)	16(1)	-25(1)
C(49)	22(1)	27(1)	28(1)	-7(1)	4(1)	-7(1)
C(50)	25(1)	28(1)	24(1)	-8(1)	4(1)	-6(1)
C(51)	21(1)	22(1)	19(1)	-2(1)	3(1)	2(1)
C(52)	31(1)	31(1)	21(1)	-6(1)	6(1)	-6(1)
CÌ11	53(1)	39(1)	46(1)	-11(1)	17(1)	-3(1)
Cl21	41(1)	35(1)	46(1)	6(1)	6(1)	10(1)
CI31	32(1)	59(1)	53(1)	11(1)	-2(1)	-10(1)
C11	32(1)	28(1)	26(1)	4(1)	7(1)	0(1)
CI12	78(1)	39(1)	39(1)	9(1)	12(1)	-5(1)
Cl22	37(1)	72(1)	68(1)	-14(1)	16(1)	-15(1)
CI32	45(1)	33(1)	37(1)	0(1)	16(1)	4(1)
C12	37(1)	28(1)	33(1)	-4(1)	10(1)	-5(1)
CI1A3	38(1)	39(1)	74(1)	22(1)	20(1)	6(1)
CI2A3	27(1)	31(1)	39(1)	-2(1)	1(1)	8(1)
CI3A3	32(1)	38(1)	48(1)	6(1)	15(1)	4(1)
C1A3	26(1)	30(2)	30(2)	4(1)	3(1)	2(1)
CI1B3	46(5)	77(7)	82(6)	-17(4)	19(4)	4(4)
CI2B3	57(3)	46(3)	136(7)	-25(4)	47(4)	-6(3)
CI3B3	98(8)	85(6)	57(5)	26(4)	6(5)	-25(6)
C(51)	21(1)	22(1)	19(1)	-2(1)	3(1)	2(1)

4. References

- [1] J. Schraml, M. Čapka, V. Blechta, Magn. Reson. Chem. 1992, 30, 544
- [2] C.Schwarz, L. T. Scharf, T. Scherpf, J. Weismann, V. H. Gessner, *Chem. Eur. J.* 2019, 25, 2793–2802
- [3] a) T. Scherpf, C. Schwarz, L. T. Scharf, J.-A. Zur, A. Helbig, V. H. Gessner, *Angew. Chemie Int. Ed.* 2018, 57, 12859–12864; b) W. Voskuil, J. F. Arens, *Org. Synth.* 1968, 48, 47; c) W. Voskuil, J. F. Arens, *Rec. Trav. Chim.* 1963, 82, 302.
- [4] C.Schwarz, T. Scherpf, I. Rodstein, J. Weismann, K.-S. Feichtner, V. H. Gessner, *Open Chem.* **2019**, *8*, 621 626.
- [5] L. Chen, P. Ren, B. P. Carrow, J. Am. Chem. Soc. 2016, 138, 6392–6395.
- [6] a) S. Serron, J. Huang, S. P. Nolan, Organometallics 1998, 17, 534; b) L. Chen, P. Ren, B. P. Carrow, J. Am. Chem. Soc. 2016, 138, 6392.
- [7] F. Bonati, G. Wilkinson, J. Chem. Soc. 1964, 3156.
- [8] a) G. M. Sheldrick, *Acta Cryst.* 2008, *A64*, 112; b) A. Thorn, B. Dittrich, G. M. Sheldrick, *Acta Cryst.* 2012, *A68*, 448; c) G. M. Sheldrick, *Acta Cryst.* 2008, *A64*, 112; d) G. M. Sheldrick, *Acta Cryst.* 2015, *C71*, 3.