Effect of treatment atmosphere on vanadium species of V/TiO₂ catalyst for the selective catalytic reduction of NO_x with NH_3

Zhihua Lian^a, Shaohui Xin^{b, c}, Na Zhu^{a, c}, Qiang Wang^b, Jun Xu^b, Yan Zhang^a,

Wenpo Shan^{a, *}, Hong He^{a, c, d}

- ^a Center for Excellence in Regional Atmospheric Environment and Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- ^b State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China
- ^c University of Chinese Academy of Sciences, Beijing 100049, China
- ^d State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- * Correspondence: wpshan@iue.ac.cn; Tel.: +86-592-6190563

1. Experimental

1.1 Catalyst synthesis and activity tests

All catalysts used anatase TiO₂ powder (DT-51 Millenium Chemicals) as support. The impregnation method was used to synthesize the V_2O_5/TiO_2 catalysts. The calculated amount of NH₄VO₃ (V₂O₅ loading 2.5%) was dissolved in oxalic acid solution. After TiO₂ was added, the mixture was agitated for 1h, and then the moisture was evaporated at 60 °C using a rotary vacuum evaporator before drying overnight at 100 °C and calcining in static air for 3 h at 500 °C. The obtained sample was denoted as V/Ti. Before aftertreatment, the samples were pressed, crushed and sieved to 40-60 mesh. Then these samples were treated under different atmospheres in a flow of 50 000 h⁻¹ at 480 °C for 2 h (10%O₂ in N₂, pure N₂ and 1000 ppm NH₃ in N₂), and denoted as V/Ti-O₂, V/Ti-N₂ and V/Ti-NH₃, respectively.

The SCR activity tests conditions were 200 000 h⁻¹ gas hourly space velocity, 500 ppm NH₃, 500 ppm NO, 5 vol.% O₂, and N₂ balance at atmospheric pressure. The effluent gases, including NO, NO₂, N₂O and NH₃, were continuously analyzed by an FTIR gas analyzer (Thermo Fisher IGS) equipped with a heated, low-volume multiple-path gas cell (2 m).

1.2 Characterization of the catalysts

Nitrogen adsorption/desorption isotherms at -196 °C were measured on a Quantachrome Autosorb iQ2 automatic adsorption instrument. The samples were degassed at 300 °C for 5 h before N_2 physisorption. Surface area and average pore diameter and pore volume were calculated from the BET equation in the 0.05-0.30 partial pressure range and the Barrett-Joyner-Halenda (BJH) method from the desorption branches of the isotherms, respectively.

Powder XRD patterns were recorded by an X'Pert Pro XRD diffractometer (PANalytical B.V., Holland) using Cu K α radiation at 40 kV and 40 mA. The data of 20 from 10 to 90° were collected at 8° min⁻¹ with the step size of 0.07°.

X-ray photoelectron spectroscopy (XPS) measurements were performed on a PHI Quantum 2000 Scanning ESCA Microprobe with a monochromatized micro-focused Al X-ray source. All the binding energies were calibrated using C1s as the reference energy (C1s = 284.6 eV).

The ⁵¹V NMR experiments were performed on a Bruker Avance III 500 spectrometer. The corresponding ⁵¹V Larmor frequency was 131.6 MHz, using a 1.9-mm HX double-resonance probe at a spinning rate of 40 kHz. The single pulse NMR spectra of ⁵¹V were acquired with a rf field strength of 166.7 kHz and a recycle delay of 0.3 s. Typically, 42,000 scans were collected for each ⁵¹V MAS NMR spectrum. The ⁵¹V chemical shift was referenced to V_2O_5 at -610 ppm.

DRIFTS experiments were conducted on a Thermo Fisher Nicolet iS50 FTIR spectrometer equipped with a Smart Collector and an MCT/A detector cooled by liquid nitrogen. The sample was pretreated at 300 °C for 0.5 h in a flow of 20 vol.%

 O_2/N_2 , cooled down to 200 °C, and subsequently purged with N_2 for 30 min for background collection. The reaction conditions were as follows: 300 ml/min total flow rate, 500 ppm NH₃, and N₂ balance. All spectra were recorded by accumulating 100 scans with a resolution of 4 cm⁻¹.

Fig. S1 XPS for O 1s of V/TiO₂ catalysts.

Fig. S2 XPS for V 2p of V/TiO₂ catalysts.

Table S1 the XPS results of different V/TiO₂ samples.

Catalysts	V atomic	S atomic	Ti atomic	V 2p		
	%	%	%	V ³⁺ /V	V ⁴⁺ /V	V ⁵⁺ /V
V/Ti	1.43	1.77	26.60	0.20	0.51	0.29

V/Ti-O ₂	1.60	1.22	27.31		0.43	0.57
V/Ti-N ₂	1.70	1.16	27.38	0.16	0.54	0.30
V/Ti-NH ₃	1.18	0	26.41	0.27	0.50	0.23

 H_2 -TPR results of V/TiO₂ catalysts are shown in Fig. S3. There was only one broad peak of H_2 consumption for the four samples. According to the literature [1, 2], surface vanadium species can be reduced at 400-500 °C. The H_2 consumption of V/Ti-NH₃ was the lowest among the four samples, which may be due to this sample having the lowest content of surface V based on XPS results. V/Ti, V/Ti-O₂ and V/Ti-N₂ presented similar H_2 reduction peaks and redox capability.

Fig. S3 H₂-TPR results of V/TiO₂ catalysts.

Fig. S4 In situ DRIFT spectra of V/Ti pretreated by NH₃ followed by exposure to NO

+ O_2 at 200 °C.

Reference

[1] I. Song, H. Lee, D.H. Kim, Rotation-Assisted Hydrothermal Synthesis of Thermally Stable Multiwalled Titanate Nanotubes and Their Application to Selective Catalytic Reduction of NO with NH₃, Acs Appl. Mater. Inter., 10 (2018) 42249-42257.

[2] Z. Lian, F. Liu, H. He, Effect of preparation methods on the activity of VO_x/CeO_2 catalysts for the selective catalytic reduction of NO_x with NH_3 , Catal. Sci. Technol., 5 (2015) 389-396.