Supporting materials

Hierarchical $FeCo_2S_4$ CoFe layered double hydroxide on Ni foam as bifunctional electrocatalyst for overall water splitting

Yunxia Huang^a, Xiaojuan Chen^a, Shuaipeng Ge^a, Qiqi Zhang^b, Xinran Zhang^a, Wenping Li^{a,*}, Yimin Cui^{a,*}

a. A Key Laboratory of Micro-nano Measurement-Manipulation and Physics Ministry of Education, Department of Physics, Beihang University, Beijing 100191, P. R. China.
b. Beijing Advanced Innovation Center for Materials Genome Engineering, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China.
Email: liwp@buaa.edu.cn (W. Li), cuiym@buaa.edu.cn (Y. Cui).

Figure S1. The cross-section SEM image of $FeCo_2S_4@CoFe LDH$. (b) SEM image of CoFe LDH at the electrodeposition time of 60 s. SEM image of $FeCo_2S_4@CoFe LDH$ at different electrodeposition time: (c) 30 s, (d) 60 s, (e) 90 s, (f) 200 s.

Figure S2. EDX spectra of FeCo₂S₄@CoFe LDH.

Figure S3. XPS spectra of (a) Co 2p, (b) Fe 2p, (c) S 2p and (d) O 1s from the $FeCo_2S_4$ and $FeCo_2S_4$ @CoFe LDH, respectively.

Figure S4. XPS spectra of O 1s from FeCo₂S₄@CoFe LDH.

Figure S5. HER polarization curves of FCCF-30, FCCF-60 and FCCF-90.

Figure S6. CV curves of (a) FeCo₂S₄@CoFe LDH, and (b) FeCo₂S₄ at different scan rates, respectively.

Figure S7. ECSA-normalized polarization curves of FeCo₂S₄@CoFe LDH and FeCo₂S₄ for (a) HER and (b) OER. The ECSA of the catalyst can be calculated according to the equation: ECAS= C_{dl}/C_s , where the specific capacitance C_s is usually between 20~60 µF cm⁻². Here we assume it as 40 µF cm⁻² in the following calculations of ECSA.¹

Figure S8. SEM images of FeCo₂S₄@CoFe LDH after (a) HER and (b) OER stability test, the inset images are the

corresponding SEM images at high resolution.

Figure S9. (a) XRD patterns and (b) XPS surveys of $FeCo_2S_4@CoFe$ LDH before test, after HER and OER stability test. XPS spectra of (c) Co 2p and (d) Fe 2p characteristic peaks from $FeCo_2S_4@CoFe$ LDH before test, after HER and OER stability test.

Catalyst	Electrolyte	η(mV)@j(mA cm ⁻²)	Tafel slope (mV dec ⁻¹)	Time
FeCo ₂ S ₄ @CoFe LDH/NF	1 M KOH	115@10	72.8	24 h (this work)
CoP/CC ²	1 M KOH	209@10	129	*
Ni ₉ S ₈ /NF ³	1 M KOH	230@10	123.3	24 h
NiCo ₂ O ₄ @NiFe LDH/NF ⁴	1 M KOH	192@10	59	10 h
FeNiP _x /NF ⁵	1 M KOH	153@10	80	90 h
NiFe ₂ O ₄ /NiFe LDH/NF ⁶	1 M KOH	101@10	67.1	
NiFeS ⁷	1 M KOH	180@10	53	200 h
NiCo ₂ S ₄ NA/CC ⁸	1 M KOH	228@20	141	12 h

Table S1. Comparison of HER activity data with other reported non-noble catalysts.

Catalyst	Electrolyte	η(mV)@j(mA cm ⁻²)	Tafel slope (mV dec ⁻¹)	Time
FeCo ₂ S ₄ @CoFe	1 M KOH	259@100	68.9	24 h (this
LDH/NF				work)
CoFe ⁹	1 M KOH	286@10	48	5 h
CoFe-LDH/TEG ¹⁰	1 M KOH	301@10	52	5 h
Co _{0.75} Ni _{0.25} Se/NF ¹¹	1 M KOH	269@50	74	40 h
FeOOH/NiFe LDH	1 M KOH	208@10	42.5	5 h
CoFe-LDH NS ¹²	1 M KOH	280@10	33.4	8 h
CoFe ₂ O ₄ /CFP ¹³	1 M KOH	378@10	73	40 h
Cu(OH)2@CoNiCH	1 M KOH	288@30	74	12 h
NTs/CF ¹⁴				

Table S2. Comparison of OER activity with other reported non-noble catalysts.

Table S3. Comparison of the electrocatalytic performance for $FeCo_2S_4$ @CoFe LDH catalyst with other reported catalysts in 1 M KOH electrolyte.

	HER		OER		
		Tafel		Tafel	Cell
Catalyst	η(mV)@j	slope	η(mV)@j	slope	voltage@10
	$(mA cm^{-2})$	(mV dec-	$(mA cm^{-2})$	(mV	mA cm ⁻²
		1)		dec ⁻¹)	
FeCo ₂ S ₄ @CoFe LDH/NF	118@10	81.5	259@100	68.9	1.6 (this work)
CoFe@NiFe-200/NF ¹⁵	240	84.69	190@10	45.71	1.59
NiFe LDH-NiSe/NF ¹⁶	276@10	70	240@100	65.6	1.53
	0				
Cu@CoFe LDH/CF ¹⁷	171@10	36.4	240@10	44.4	1.68
NiCo ₂ S ₄ NW /NF ¹⁸	210@10	58.9	260@10	40.1	1.63
EG/Co _{0.85} Se/NiFe-LDH ¹⁹	260@10	160	270@150	57	1.67
NiFe-NCs/CFP ²⁰	197@10	130	271@10	48	1.67
NiFe ₂ O ₄ /NiFe LDH/NF ⁶	101@10	67.1	213@100	28.2	1.535
NiFe/NiCo ₂ O ₄ /NF ²¹	105@10	88	240@10	38.8	1.67
NiCo ₂ O ₄ @Ni _{0.796} Co	115@10	56.42	193@10	37.59	1.6
LDH/NF ²²					
NiCoFe LTHs/CFC ²³	200@10	70	239@10	32	1.55
NiCo ₂ S ₄ @NiFe LDH/NF ²⁴	200@10	46.3	201@60	101.1	1.6
NiCo ₂ O ₄ @NiO@Ni/NF ²⁵	124@10	58	240@10	43	1.6
Co ₃ S ₄ @MoS ₂ ²⁶	136@10	74	280@10	43	1.58
NiS/NF ²⁷	158@20	83	335@50	89	1.64

References

- 1. R. Xiang, Y. J. Duan, L. S. Peng, Y. Wang, C. Tong, L. Zhang and Z. D. Wei, *Applied Catalysis B-Environmental*, 2019, **246**, 41-49.
- 2. J. Q. Tian, Q. Liu, A. M. Asiri and X. P. Sun, *Journal of the American Chemical Society*, 2014, **136**, 7587-7590.

- G. F. Chen, T. Y. Ma, Z. Q. Liu, N. Li, Y. Z. Su, K. Davey and S. Z. Qiao, Advanced Functional Materials, 2016, 26, 3314-3323.
- 4. Z. Q. Wang, S. Zeng, W. H. Liu, X. W. Wang, Q. W. Li, Z. G. Zhao and F. X. Geng, *Acs Applied Materials & Interfaces*, 2017, **9**, 1488-1495.
- 5. C. H. Xiao, B. Zhang and D. Li, *Electrochim. Acta*, 2017, **242**, 260-267.
- 6. Z. C. Wu, Z. X. Zou, J. S. Huang and F. Gao, *Acs Applied Materials & Interfaces*, 2018, **10**, 26283-26292.
- 7. P. Ganesan, A. Sivanantham and S. Shanmugam, *Journal of Materials Chemistry A*, 2016, **4**, 16394-16402.
- 8. D. N. Liu, Q. Lu, Y. L. Luo, X. P. Sun and A. M. Asiri, *Nanoscale*, 2015, **7**, 15122-15126.
- A. M. P. Sakita, R. Della Noce, E. Valles and A. V. Benedetti, *Applied Surface Science*, 2018, 434, 1153-1160.
- C. Yu, X. T. Han, Z. B. Liu, C. T. Zhao, H. W. Huang, J. Yang, Y. Y. Niu and J. S. Qiu, *Carbon*, 2018, 126, 437-442.
- 11. S. Liu, Y. M. Jiang, M. Yang, M. J. Zhang, Q. F. Guo, W. Shen, R. X. He and M. Li, *Nanoscale*, 2019, **11**, 7959-7966.
- 12. R. Gao and D. P. Yan, *Nano Research*, 2018, **11**, 1883-1894.
- 13. A. Kargar, S. Yavuz, T. K. Kim, C. H. Liu, C. Kuru, C. S. Rustomji, S. Jin and P. R. Bandaru, *Acs Applied Materials & Interfaces*, 2015, **7**, 17851-17856.
- 14. J. H. Kang, J. L. Sheng, J. Q. Xie, H. Q. Ye, J. H. Chen, X. Z. Fu, G. P. Du, R. Sun and C. P. Wong, *Journal of Materials Chemistry A*, 2018, **6**, 10064-10073.
- 15. R. Yang, Y. M. Zhou, Y. Y. Xing, D. Li, D. L. Jiang, M. Chen, W. D. Shi and S. Q. Yuan, *Applied Catalysis B-Environmental*, 2019, **253**, 131-139.
- 16. S. Dutta, A. Indra, Y. Feng, T. Song and U. Paik, *Acs Applied Materials & Interfaces*, 2017, **9**, 33766-33774.
- L. Yu, H. Q. Zhou, J. Y. Sun, F. Qin, D. Luo, L. X. Xie, F. Yu, J. M. Bao, Y. Li, Y. Yu, S. Chen and Z.
 F. Ren, *Nano Energy*, 2017, **41**, 327-336.
- 18. A. Sivanantham, P. Ganesan and S. Shanmugam, *Advanced Functional Materials*, 2016, **26**, 4661-4672.
- 19. Y. Hou, M. R. Lohe, J. Zhang, S. H. Liu, X. D. Zhuang and X. L. Feng, *Energy & Environmental Science*, 2016, **9**, 478-483.
- 20. A. Kumar and S. Bhattacharyya, *Acs Applied Materials & Interfaces*, 2017, **9**, 41906-41915.
- 21. C. L. Xiao, Y. B. Li, X. Y. Lu and C. Zhao, *Advanced Functional Materials*, 2016, **26**, 3515-3523.
- 22. W. F. Wei, X. W. Cui, W. X. Chen and D. G. Ivey, *Chemical Society Reviews*, 2011, **40**, 1697-1721.
- 23. A. L. Wang, H. Xu and G. R. Li, *Acs Energy Letters*, 2016, **1**, 445-453.
- 24. J. Liu, J. S. Wang, B. Zhang, Y. J. Ruan, L. Lv, X. Ji, K. Xu, L. Miao and J. J. Jiang, Acs Applied Materials & Interfaces, 2017, 9, 15364-15372.
- 25. L. Y. Wang, C. D. Gu, X. Ge, J. L. Zhang, H. Y. Zhu and J. P. Tu, *Particle & Particle Systems Characterization*, 2017, **34**, 1700228.
- 26. Y. N. Guo, J. Tang, Z. L. Wang, Y. M. Kang, Y. Bando and Y. Yamauchi, *Nano Energy*, 2018, **47**, 494-502.
- 27. W. X. Zhu, X. Y. Yue, W. T. Zhang, S. X. Yu, Y. H. Zhang, J. Wang and J. L. Wang, *Chemical Communications*, 2016, **52**, 1486-1489.