Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2019

Supporting Information

Optimization of the Facet Structure of Cobalt Oxide Catalysts for Enhanced

Hydrogen Evolution Reaction

Minghong Wu^{*a,b*}, Shuqiang Ke^{*a*}, Wenqian Chen^{*a,c**}, Shaomei Zhang^{*a*}, Min Zhu^{*a*}, Yu

Zhang^{*a*}, Maw Lin Foo^{*d*}, Liang Tang^{*a,b**}

^a School of Environmental and Chemical Engineering, Shanghai University, Shanghai
200444, PR China

^b Key Laboratory of Organic Compound Pollution Control Engineering, Ministry of Education, Shanghai 200444, PR China

^c Shanghai Institute of Applied Radiation, Shanghai University, 20 Chengzhong Road,
Shanghai 201800, PR China

^d Department of Chemistry, National University of Singapore, 117543, Singapore

* Corresponding authors: wenqianchen@shu.edu.cn, tang1liang@shu.edu.cn

Number of Pages: 9 Number of Figures: 11 Number of Tables: 3

Figure S1. XRD patterns of Co_3O_4 112, Co_3O_4 011 and Co_3O_4 001.

Figure S2. XPS survey spectrum of (a) Co_3O_4 011 and (b) Co_3O_4 001. Both the XPS results show the signal of C, Co, and O without any other impurities.

Figure S3. SEM images and EDS spectra of $(a, d) Co_3O_4 112$, $(b, e) Co_3O_4 011$, and $(c, f) Co_3O_4 001$.

Figure S4. Nitrogen adsorption-desorption isotherms and the corresponding pore-size distribution curves (inset) of Co_3O_4 112, 011 and 001 samples.

Figure S5. (a) UV-vis diffuse reflectance spectra (DRS) and (b) $(\alpha hv)^2$ -hv curve of Co_3O_4 112, 011 and 001 samples. The band gap energy (E_g) of a semiconductor can be calculated by the Tauc drawing method: $\alpha hv = A(hv - E_g)^{n/2}$, where h, v, α , and A respectively represent the Planck constant, light frequency, the absorption coefficient and a constant. The inherent optical transition characteristics of the semiconductors

determine the value of n, where n = 1 for direct transitions and n = 4 for indirect transitions.

Figure S6. PL spectra of Co_3O_4 112, 011 and 001 at an excitation wavelength of 500

nm.

Figure S7. (a) Electrochemical impedance spectroscopy (EIS) and (b) transient photocurrent response under visible light irradiation of Co_3O_4 112, 011 and 001 samples.

Figure S8. XRD patterns of Co_3O_4 112 after 20 hours of photocatalytic hydrogen evolution.

Figure S9. Mott-Schottky curves of Co_3O_4 112, 011 and 001 samples with frequencies of 1.0kHz. The flat band potential (E_{fb}) of Co_3O_4 112 and 001 are 0.50 V versus SCE, and Co_3O_4 011 is 0.62 V. It is generally considered that the E_{VB} of the p-type

semiconductor is higher 0.1 or 0.2 V than E_{fb} ,¹ so the E_{VB} of Co_3O_4 112 and 001 are roughly estimated to be 0.60 V vs. SCE, and Co_3O_4 011 is 0.72 V. According to the equation: $E_{NHE} = E_{SCE} + 0.241$, the E_{VB} of Co_3O_4 112 and 001 are roughly estimated to be 0.841V vs. NHE, while Co_3O_4 011 is 0.961V.

Figure S10. The crystal structure of spinel Co_3O_4 ($Co^{2+}Co^{3+}_2O_4$). (a) Co^{2+} ion in the unit cell occupies the tetrahedral site, (b) Co^{3+} ion occupies the octahedral site.

Figure S11. (a) Co 2p spectra of Co₃O₄ 112 after 20 hours of photocatalytic hydrogen evolution. (b) Detailed peak positions in (a).

Samples	C (at%)	Co (at%)	O (at%)
Co ₃ O ₄ 112	9.64	65.67	24.69
Co ₃ O ₄ 011	41.51	16.73	41.75
Co ₃ O ₄ 001	21.05	29.05	49.90

Table S1. Elemental compositions of prepared three Co_3O_4 samples.

Table S2. Detailed peak position and corresponding area percentage of the Co $2p_{3/2}$ and O 1s spectra of prepared three Co₃O₄ samples.

	Co 2p _{3/2}				O 1s			
Samples	Со	3+	Со	2+	-0	Н	absorbe	d H ₂ O
	Position (eV)	Area (%)	Position (eV)	Area (%)	Position (eV)	Area (%)	Position (eV)	Area (%)
Co ₃ O ₄ 112	779.9	74.08	781.5	25.92	531.3	91.72	533.2	8.28
Co ₃ O ₄ 011	779.9	71.02	781.4	28.98	531.3	91.12	533.2	8.88
Co ₃ O ₄ 001	780.1	56.11	781.7	43.89	531.3	81.34	533.2	18.66

Samples	BET surface area (m ² /g)	Mean pore width (nm)	Pore volume (cm ³ /g)
Co ₃ O ₄ 112	74.439	2.6	0.079
Co ₃ O ₄ 011	62.117	2.8	0.072
Co ₃ O ₄ 001	35.922	2.6	0.034

Table S3. Porous structure parameters of prepared three Co_3O_4 samples

References

1. X. Li, J. Yu, J. Low, Y. Fang, J. Xiao and X. Chen, Engineering heterogeneous semiconductors for solar water splitting, *J. Mater. Chem. A*, 2015, **3**, 2485-2534.