Supporting Information

Theoretical Investigation on Hydrogen Evolution Reaction Mechanism

at MoS₂ Heterostructure: The Essential Role of 1T/2H Phase Interface

Tian Zhang^{a,†}, Houyu Zhu^{a,†}, Chen Guo^b, Shoufu Cao^a, Chi-Man Lawrence Wu^{b*}, Zhaojie Wang^a, Xiaoqing Lu^{a*}

^aSchool of Materials Science and Engineering, China University of Petroleum, Qingdao, Shandong 266580, P. R. China

^bDepartment of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR, P. R. China

*Corresponding authors: Chi-Man Lawrence Wu, Xiaoqing Lu

E-mail address: lawrence.wu@cityu.edu.hk, luxq@upc.edu.cn

[†]These authors have made an equal contribution to this work.

Figure S1. Density of states for the "Zigzag" (a) and "Armchair" (b) interfaces, projected on the d-orbitals of Mo and p-orbitals of S.

Figure S2. The H adsorption geometries at "Zigzag" (a) and "Armchair" (b) interfaces under different H coverages.

Figure S3. (a) Energy barrier (E_a) and (b) reaction energy (E_r) for the Volmer reaction, (c) E_a and (d) E_r for the Heyrovsky reaction as a function of the change in electrode potential ΔU at the "ZigZag" interface. For the three data points from left to right, the interfacial H coverages in the initial states are 10%, 20% and 30%, respectively.

Figure S4. (a) E_a and (b) E_r for the Volmer reaction, (c) E_a and (d) E_r for the Heyrovsky reaction as a function of the change in electrode potential ΔU at the "Armchair" interface. For the three data points from left to right, the interfacial H coverages in the initial states are 11%, 22% and 33%, respectively.

Interface	H-coverage	$\Delta G_{\rm H}$, eV
Zigzag -	10%	0.47
		0.64
		0.77
	20%	0.57
		0.66
		0.87
Armchair	11%	0.60
		0.72
		0.78
	22%	0.64
		0.72
		0.78

Table S1. The interfacial H adsorption energies (ΔG_{H} , eV) at 2H phase.

Dopant	Site	ΔG_{H}
6	I	0.59
CO	П	-0.37
Fe	I	1.23
	II	0.74
Ni	I	0.60
	П	-0.03
75	I	0.68
211	П	0.58
	О-Н*	-0.94
0	I	0.23
	П	0.78
	N-H*	-1.46
Ν	I	0.05
_	П	0.60
	P-H*	-0.77
Р	I	0.27
	Ш	0.87

Table S2. Free energies (ΔG_{H} , eV) of H adsorption at the doped "Zigzag" interface.