Electronic Supplementary Information

Framework-confined Sn in Si-Beta stabilizing ultra-small Pt nanoclusters as direct propane dehydrogenation catalysts with high selectivity and stability

Yansu Wang^a, Zhong-Pan Hu^a, Wenwen Tian^a, Lijiao Gao^a, Zheng Wang^b, Zhong-Yong Yuan^{a,*}

^a Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), National Institute for Advanced Materials, School of Materials Science and Engineering, Nankai University, Tianjin 300350, China

^b State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, Ningxia University, Yinchuan 750021, China

* Corresponding author. *E-mail:* zyyuan@nankai.edu.cn

Experimental section

1 Preparation of Zn-Si-Beta catalyst.

Zn-Si-Beta catalyst was prepared by dealumination of H-Beta and then the introduction of Zn species via dry impregnation. In a typical process, commercial H-Beta zeolite was stirred in a 13 M nitric acid aqueous solution (20 mL g_{zeolite}⁻¹) at 100 °C for 10 h to obtain a dealuminated Beta (Si-Beta). The mixture was centrifuged and washed with deionized water for several times to remove residual nitric acid, then dried for 12 h in a vacuum oven (200 °C, -0.1 MPa) to remove physisorpted water. Afterwards, 1.0 g of Si-Beta was finely ground with a certain amount of Zn(NO₃)₂·6H₂O and calcined at 550 °C for 6 h. The as-prepared samples were labeled as Zn-Si-Beta. For comparison, Zn-H-Beta was synthesized with the similar procedure of Zn-Si-Beta sample.

2 Preparation of Pt/Zn-Si-Beta catalyst.

The Pt/Zn-Si-Beta catalyst was prepared by introducing the platinum precursor onto the Zn-Si-Beta using the wet impregnation method. Typically, 1 g Zn-Si-Beta was stirred in 20 mL deionized water for 2 h. Then, calculated H₂PtCl₆ solution (0.01 M) was added dropwise into the above solution, and then, the mixture was subsequently stirred at 25 °C for 6 h. After that, the solvent was slowly evaporated at 80 °C under stirring until the solvent was all evaporated, and the remaining solid was further dried at 100 °C for 12 h. Finally, the Pt/Zn-Si-Beta was obtained after calcination at 550 °C for 6.0 h with 3 °C min⁻¹ heating rate. For reference, Pt/Zn-H-Beta was also prepared by the similar procedure.

Figures:

Fig. S1 TEM and EDS elemental mapping images of the 1.5Pt/2.5Sn-Si-Beta.

Fig. S2 Carbon balance value of 0.3Pt/0.5Sn-Si-Beta as a function of reaction time.

Fig. S3 Diffuse reflectance UV-vis spectra of the dehydrated fresh 0.3Pt/0.5Sn-Si-Beta and the used 0.3Pt/0.5Sn-Si-Beta after 12 h on stream at 550 °C.

Fig. S4 TEM and EDS elemental mapping images of the used 0.3Pt/0.5Sn-Si-Beta after 12 h on stream at 550 °C,, as well as the corresponding histograms of Pt particle size distribution (*inset*).

Fig. S5 TG results of the used 0.3Pt/0.5Sn-Si-Beta and 0.3Pt/0.5Sn-H-Beta after PDH at 550 °C for different time on stream.

Fig. S6 Pt 4f XPS spectra of 0.3Pt/Si-Beta and 0.3Pt/0.5Sn-Si-Beta catalysts.

Fig. S7 Zn 2p XPS spectra for (a) 0.5Zn-H-Beta and 0.3Pt/0.5Zn-H-Beta and (b) 0.5Zn-Si-Beta and 0.3Pt/0.5Zn-Si-Beta.

Tables:

Samples	Pt loading (wt%)	Sn loading (wt%)		
0.1Pt/0.5Sn-Si-Beta	0.08	0.44		
0.2Pt/0.5Sn-Si-Beta	0.19	0.47		
0.3Pt/0.5Sn-Si-Beta	0.28	0.42		
0.4Pt/0.5Sn-Si-Beta	0.38	0.44		
0.5Pt/0.5Sn-Si-Beta	0.47	0.46		
0.6Pt/0.5Sn-Si-Beta	0.55	0.42		
0.3Pt/0Sn-Si-Beta	0.27	0		
0.3Pt/0.1Sn-Si-Beta	0.28	0.07		
0.3Pt/0.3Sn-Si-Beta	0.29	0.26		
0.3Pt/0.5Sn-Si-Beta	0.26	0.47		
0.3Pt/0.7Sn-Si-Beta	0.28	0.63		
0.3Pt/1Sn-Si-Beta	0.29	0.8		
0.3Pt/1.3Sn-Si-Beta	0.28	1.21		
0.3Pt/1.5Sn-Si-Beta	0.26	1.3		

 Table S1. Metal loading amounts measured by ICP-OES for the prepared catalysts.

No.	Catalysts ^a	T [°C]	WHSV [h ⁻¹]	Feed composition	Conversion ^b [%]	Selectivity [%]	Specific activity of C_3H_6 formation $[s^{-1}]^c$	<i>k</i> _d ^{<i>d</i>} [h ⁻¹]	[h] ^e	Ref
1	0.6wt%Pt-5wt% Ga/MgAl ₂ O ₄	605	3.9	C ₃ H ₈ =73, H ₂ =27	31-30	97-98	0.176	0.024	41.7	[1]
2	0.9wt%Pt/Mg(Ga)(Al)O	600	2.6	C ₃ H ₈ =20, H ₂ =25, He=55	16-11.4	99.2	0.0113	0.20	5	[2]
3	0.7wt%Pt/Mg(In)(Al)O	600	2.6	C ₃ H ₈ =20, H ₂ =25, He=55	20.4-16.3	98	0.183	0.14	2	[3]
4	0.35wt%Pt- 1.26wt%Sn/Al ₂ O ₃	519	3.5	C ₃ H ₈ =30, N ₂ =70	31-20	95-98	0.109	0.29	3.4	[4]
5	0.36wt%Pt- 0.68wt%Sn/Al ₂ O ₃ -sheet	590	9.4	C ₃ H ₈ =16, H ₂ =20, N ₂ =64	48.7-44.6	98.7	1.58	0.007	143	[5]
6	0.1Pt10Cu/Al ₂ O ₃	520	4	C ₃ H ₈ /H ₂ =1/1, N ₂ =50	13.1-12.4	87-89	0.56	0.000 5	2000	[6]
7	PtNa/Zn(1.0%)-ZSM-5	590	3	$H_2/C_3H_8=0.25$	40.6-37.9	93-97	-	0.073	13.7	[7]
8	0.5 wt% Pt-Sn-Na/Al- SBA-15	590	3	C ₃ H ₈ =75, H ₂ =25	27.5-12.6	~94	0.143	0.024	40	[8]
9	0.5wt%Pt-0.6wt%Sn/TS-1	590	3	C ₃ H ₈ /H ₂ /N ₂ =1/ 1/4	53.5-47.7	92.5-93.0	0.4	0.033	30.3	[9]
10	0.5wt%Pt-2.0wt%Sn- 1.0wt%Na/SUZ-4	590	3	H ₂ /C ₃ H ₈ =3/1	24-22	90-91	0.160	0.011	88	[10]
11	0.5 wt % Pt/Zn-Beta	555	2.6	C ₃ H ₈ =100	40-29	55-90	0.141	0.04	12	[11]
12	0.5wt%Pt-Na/ Sn-ZSM-5	590	3	C ₃ H ₈ =75, H ₂ =25	41.7-39.1	95.3-98	0.220	0.012	83.3	[12]
13	0.3Pt/0.5Sn-H-Beta	550	1	$N_2/C_3H_8=19/1$	14.3-7.4	99.4-99.9	0.06	0.058	17.2	This work
14	0.3Pt/0.5Sn-Si-Beta	550	1	$N_2/C_3H_8=19/1$	27.5-25.2	99.1-99.9	0.13	0.007	142.8	This work

Table S2. Catalytic properties of propane dehydrogenation over Pt-based catalysts in this work and in the literature.

^{*a*} Catalysts described in this work and in the literature.

^b First value is obtained at the start of the cycle, second at the end.

^c Specific activity is defined as the moles of C₃H₆ formation per mole of Pt atom per second.

^{*d*} k_d , deactivation rate constant calculated from ln [(1- X_{final})/ X_{final}]= $k_d * t + \ln [(1-X_{\text{intial}})/X_{\text{intial}}]$.

^{*e*} Time required for rates to decrease by e^{-1} , $\tau = 1/k_d$.

	cluster	cluster	Dispersion	Loading ^d		Loading ^e		
Samples	size ^a	size ^b	ize b of Pt c (wt		%)	(wt	(wt%)	
	(nm)	(nm)	(%)	Pt	Sn	Pt	Sn	
0.3Pt/0.5Sn-Si-Beta	-	1.6	75	0.28	0.46	0.26	0.45	
0.3Pt/0.5Sn-H-Beta	3.5	6.5	30	0.27	0.48	0.20	0.41	
0.3Pt/Si-Beta	2.6	6.9	41	0.27	-	0.18	-	

 Table S3. Physicochemical parameters of 0.3Pt/Si-Beta, 0.3Pt/0.5Sn-Si-Beta and 0.3Pt/0.5Sn-H-Beta

 catalysts.

^{a.} Evaluated using the TEM images for fresh catalysts.

^{b.} Evaluated using the TEM images for spent catalysts.

^{c.} Determined by H₂-O₂ titration measurements for fresh catalysts.

^{d.} Measured by ICP-OES for fresh catalysts.

e. Measured by ICP-OES for spent catalysts.

References

- 1 P. L. De Cola, R. Gläser and J. Weitkamp, Appl. Catal. A: Gen., 2006, 306, 85-97.
- 2 G. Siddiqi, P. Sun, V. Galvita and A. T. Bell, J. Catal., 2010, 274, 200-206.
- 3 P. Sun, G. Siddiqi, W.C. Vining, M. Chi and A. T. Bell, J. Catal., 2011, 282, 165-174.
- 4 O. A. Barias, A. H., and E. A. Blekkan, J. Catal., 1996, 158, 1-12.
- 5 L. Shi, G. M. Deng, W. C. Li, S. Miao, Q. N. Wang, W. P. Zhang and A. H. Lu, Angew Chem. Int. Ed. Engl., 2015, 54, 13994-13998.
- G. Sun, Z. J. Zhao, R. Mu, S. Zha, L. Li, S. Chen, K. Zang, J. Luo, Z. Li, S. C. Purdy, A. J. Kropf, J. T. Miller, L. Zeng and J. Gong, *Nat. Commun.*, 2018, 9. DOI: 10.1038/s41467-018-06967-8.
- Y. Zhang, Y. Zhou, L. Huang, S. Zhou, X. Sheng, Q. Wang and C. Zhang, *Chem. Eng. J.*, 2015, 270, 352-361.
- 8 Y. Z. Duan, Y. M. Zhou, Y. W. Zhang, X. L. Sheng and M. W. Xue, *Catal Lett.* 2011, 141, 120-127.
- 9 J. Li, J. Li, Z. Zhao, X. Fan, J. Liu and Y. Wei, J. Catal. 2017, 352, 361-370.
- 10 H. Zhou, J. Gong, B. Xu, L. Yu and Y. Fan, Appl. Catal. A. Gen. 2016, 527, 30-35.
- 11 P. L. De Cola, R. Gläser and J. Weitkamp, J. Appl. Catal., A. 2006, 306, 85-90.
- 12 Y. Zhang, Y. Zhou, L. Huang, M. Xue and S. Zhang, Ind. Eng. Chem. Res. 2011, 50, 7896-7902.