Fabrication and Synergistic Effect Studying of Janus Ni₂P/Ni₅P₄ Embedded in N-Doped Carbon as Efficient Electrocatalysts for Hydrogen Evolution Reaction

Weizhao Hong, Chade Lv, Shanfu Sun, Gang Chen*

W. Hong, C. Lv, S. Sun and Prof. G. Chen, MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, P. R. China.

*Corresponding author: Gang Chen.

*E-mail: gchen@hit.edu.cn.

Figure S1. DED (DED = electron density of model with EEF – electron density of model without EEF) along z-axis with different EEF (-0.1, -0.05, -0.01, 0.01, 0.05 and 0.1 V Å⁻¹) (a) Ni₂P (110)-Ni₅P₄ (100) and (b) Ni₂P (001)-Ni₅P₄ (001), (c, d) maximum of DED (M_{DED}) along z-axis of Ni₂P (110)-Ni₅P₄ (100) and Ni₂P (001)-Ni₅P₄ (001).

Figure S2. (a) Average DED along z axis of a symmetric slab model of Ni_2P (001) and (b, c) M_{DED} of along z-axis of Ni_2P (001) applied different external electric field.

Figure S3. XRD pattern of precursor.

Figure S4. FTIR spectrum of precursor.

Figure S5. Thermogravimetry and differential thermal curves of precursor

Figure S6. Raman spectra of Ni_2P/Ni_5P_4 (a) NC-30 and Ni_2P/Ni_5P_4 -30.

Figure S7. XRD patterns of Ni₂P/Ni₅P₄@NC-x (x=10, 20, 30, 40, 50).

Figure S8. (a) SEM image, (b) TEM images and (c-d) HRTEM images of $Ni_2P/Ni_5P_4@NC-30$.

Figure S9. HRTEM images of (a) $Ni_2P/Ni_5P_4@NC-10$ and (b) $Ni_2P/Ni_5P_4@NC-50$.

Figure S10. (a) HAADF image of Ni_2P/Ni_5P_4 @NC-30 and energy-dispersive X-ray (EDX) mapping analysis of Ni (b), P (c), C (d) and N (e).

Figure S11. LSV and Tafel curves of $Ni_2P/Ni_5P_4@NC-x$ (x=10, 20, 30, 40, 50) and Pt/C in 0.5 M H₂SO₄ with a scanning rate of 5 mV s⁻¹.

Figure S12. LSV and Tafel curves of Ni_2P/Ni_5P_4 @NC-x (x=10, 20, 30, 40, 50) and Pt/C in 1 M KOH with a scanning rate of 5 mV s⁻¹.

Catalyst	Potential (mV, j = 10 mA cm ⁻²)	Tafel slope (mV dec ⁻¹)	Journal	Reference
CoP NTs	129	60	J. Mater. Chem.	2014, <i>2</i> (36), 14812
Ni ₅ P ₄ -Ni ₂ P-NS	130	79	Angew. Chem. Int. Edit.	2015, <i>54</i> (28), 8188
Ni ₂ P/CNT	124	53	J. Mater. Chem. A	2015, <i>3</i> (24), 13087
Se-enriched NiSe ₂ NS	117	32	Angew. Chem. Int. Edit.	2016, <i>55</i> (24), 6919
Mo doped Ni ₂ P	67	77	Nanoscale	2017, <i>9</i> (43), 16674
CoP-CNT	139	52	Small	2017, <i>13</i> (15), e1400268
FeP/C	71	52	J. Am. Chem. Soc.	2017, <i>139</i> (19), 6669
CoP ₃ /Ni ₂ P	115	49	J. Mater. Chem. A	2018, <i>6</i> (14), 5560
Au@CoP	160	52	Nano Energy	2018, <i>50</i> , 273
Ni ₂ P/Ni ₅ P ₄ @NC	104	38.5	-	_ This work

Table S1. Comparison of HER performance in acidic electrolyte for $Ni_5P_4/Ni_2P@NC$ with other HER catalysts

Figure S13. Nyquist plots of Ni_2P/Ni_5P_4 @NC-x (x=10, 20, 30, 40, 50) at the potential of -104 mV vs. RHE.

Figure S14. (a) Electrochemically doubl-layer capacitance (C_{dl}) and cyclic voltammetry curves of (b) $Ni_2P/Ni_5P_4@NC-10$, (c) $Ni_2P/Ni_5P_4@NC-20$, (d) $Ni_2P/Ni_5P_4@NC-30$, (e) $Ni_2P/Ni_5P_4@NC-40$, (f) $Ni_2P/Ni_5P_4@NC-50$. The sample was scanned five cycles at different scan rates (20, 40, 60, 80, and 100 mV/s).

Figure S15. (a) Polarization curve before and after 3000 cycles of a durability test in 0.5 M H₂SO₄, (b) XRD pattern, XPS spectra of (c) Ni 2p and (d) P 2p regions of Ni₂P/Ni₅P₄@NC-30.

Figure S16. The amount of H_2 theoretically calculated and experimentally measured versus time in 0.5 H_2SO_4 .

Figure S17. Ni_2P/Ni_5P_4 slab models of (a) Ni_2P (110)- Ni_5P_4 (100) and (b) Ni_2P (001)-

Ni₅P₄ (001).

Figure S18. Separation views of Ni_2P (110)- Ni_5P_4 (100) and Ni_2P (001)- Ni_5P_4 (001) slab models.

Figure S19. Static potential along z axis of Ni_2P (001)- Ni_5P_4 (001).

Interface		Ni_2P (110)- Ni_5P_4 (100)	$Ni_2P(001)-Ni_5P_4(001)$
B.E. (eV Å ⁻²) ^{a)}		11.04	14.27
S _{IEF}	Ni ₂ P	2.40	1.24
(mV Å ⁻¹)	Ni ₅ P ₄	0.68	-0.14
$\Delta E_{f} (eV)^{b}$		0.15	-0.03
$\Delta G_{ m H*~Ni5P4+Ni2P}$ - $\Delta G_{ m H*~Ni5P4}$	P1	-12	17
(meV)	P2	-5	19

Table S2. The calculation results of interfaces

a) B.E. = Binding Energy

b) $\Delta E_f = E_{f, Ni2P} - E_{f, Ni5P4}$