Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2020

Electronic Supplementary Information

Embedded oxygen vacancies at SnO₂-CNT surfaces via microwave polyol strategy towards effective electrocatalytic reduction of carbon-dioxide to formate

Kumaravelu Pavithra^a and Sakkarapalayam Murugesan Senthil Kumar, * a,b

^a Materials Electrochemistry Division, CSIR-Central Electrochemical Research Institute, Karaikudi, Tamil Nadu, 630 003, India,

^b Acadamy of Scientific and Innovative Research (AcSIR), CSIR-Central Electrochemical Research Institute, Karaikudi, Tamil Nadu, 630 003, India.

*Corresponding Author E-mail: <u>senthilkumarsm@cecri.res.in</u>; <u>smsk_2k@yahoo.com</u>

Formulas used

1. Debye-Scherrer formula, $D = K\lambda / \beta \cos \theta$

Where K= shape factor (0.89), λ = wavelength of the Cu-K α radiation (1.5406 A°), β = full width at half maximum, cos θ = Bragg's angle of diffraction ($n\lambda$ = 2d sin θ).

2. Faraday Efficiency (FE %) = nNF/Q * 100

Where n = no. of moles of product, N = no. of electrons for a product, F = Faraday Constant, Q = Total charge during the reaction, FE = Faraday efficiency.

3. Energy Efficiency (EE %) = $FE(\%)*\Delta E_{HCOOH}/\Delta E_{HCOOH}$

Where ΔE_{HCOOH}° = Difference in standard half reaction potential for water oxidation (1.23 V vs RHE) and CO₂ reduction to HCOOH (-0.2 V vs RHE) and ΔE_{HCOOH} =Difference in standard water oxidation potential and working potential of cathode.

4. Partial Current Density (PCD mA/cm⁻²) = FE * Q/t * 1/A

Where t = time, A= geometric area of electrode, PCD = partial current density

- 5. Turn over Number (TON) = Formate Product in mole/Catalyst loading in mol/cm² *geometric electrode area in cm²
- 6. Turn over Frequency $TOF(s^{-1}) = TON/Electrolysis time in sec$

Supplementary Figures

Fig. S1. HRTEM image of SnO_2 and its corresponding SAED pattern which is synthesised by using similar experimental procedure of Microwave polyol synthesis without adding CNT.

Fig. S2. Survey spectrum of all the synthesised SnO₂-CNT composites

Fig. S3. (a), (b), (c) and (d) Deconvoluted spectrum of C 1s of SnO_2 -CNT pH-7, SnO_2 -CNT pH-9, SnO_2 -CNT pH-11, SnO_2 -CNT pH-13 respectively

Mechanistic details

In order to understand the SnO₂-CNT formation mechanism, FT-IR was recorded in three different stages. The catalyst was collected at three different stages of the synthesis for example – (i) before microwave irridiation, (ii)after irradiation of microwave and (iii) after the calcinations step. In FT-IR, the peak around 1017, 1720, 2824 and 2920 cm⁻¹ were attributed to -C-O, -C=O- and -CH- group from CNT. This confirms the presence of acid functionality in CNT. The peak at 1410 cm⁻¹ is from the –CH₂- of ethylene glycol. The broad peak around 3450 cm⁻¹ is due to the presence of –OH from the surrounding water molecules. The appearance of vibrations at 1619 cm⁻¹ indicates the presence of -Sn-OH bond. The formation of SnO₂ was confirmed by the presence O-Sn-O and Sn-O-Sn vibrations at 477 and 618 cm⁻¹. From the graph it is clearly seen that the nucleation has been initiated even before microwave irradiation. During microwave, the formation of SnO₂ occurs effectively. But still there is the presence of -Sn-OH and -CH₂- vibrations which indicates incomplete reduction of Sn and the presence of ethylene glycol. After calcination, the ethylene glycol has been completely decomposed. During the deposition of SnO₂ on CNT surface, there is a significant decrease in the intensity of peaks corresponding to CNT confirms that the presence of acid functionality helps in anchoring SnO₂ on the surface of CNT. Our proposed mechanism based on FT-IR is in good agreement with XRD and Raman analysis

Fig. S4. FT-IR of SnO₂-CNT pH-11 at various stages of synthesis

Fig. S5. XRD of SnO₂-CNT pH-11 at various stages of synthesis

Fig. S6. (a) and (b) Raman spectra of SnO₂-CNT pH-11 at various stages of synthesis

Microwave induced oxygen vacancy

To understand the influence of microwave in oxygen vacancy, a control experiment was done. SnO_2 -CNT pH-11 was synthesised in the presence and absence of microwave. The sample without microwave irradiation is labelled as pure SnO_2 -CNT. The XRD and Sn 3d, O 1s of XPS spectra of as pure SnO_2 -CNT confirms formation of SnO_2 with the absence of oxygen vacancy.

Fig. S7 (a) XRD spectrum of SnO_2 -CNT without microwave (b) Sn 3d XPS spectrum of SnO_2 -CNT without microwave (c) shows the O 1s spectra of pure SnO_2 -CNT and SnO_2 -CNT pH-11.

Fig. S8. (a), (b), (c) and (d) shows the capacitive behaviour of SnO₂-CNT pH-7, SnO₂-CNT pH-9, SnO₂-CNT pH-11, SnO₂-CNT pH-13 respectively in the region of 0.05 to 0.55 V vs. RHE at different scan rates of 30, 100, 170, 220, 240 mV/sec in a 0.1 M K₂SO₄

Fig. S9. (a), (b) and (c) Constant potential electrolysis plot of I vs. t for all the SnO_2 -CNT composites at a fixed potential of -0.52, -0.77 and -0.92 V vs. RHE respectively recorded over a time period of 5400 s. (provided only for one set of experiment)

Fig. S10. depicts a plot of TOF change with respect to overpotential for all the composites.

Fig. S11. ¹H NMR spectra of SnO₂-CNT pH-11 recorded in water suppression mode at -0.62, -0.77, -0.92 V vs. RHE which clearly indicates the presence of formate around 8.34 ppm along with phenol (internal standard) in the region of 6.8-7.3 ppm.

Fig. S12. ¹H NMR spectra of SnO_2 -CNT (pH-11) recorded in water suppression mode at - 0.77 vs. RHE at different time intervals.

Post-studies

 SnO_2 -CNT pH-11 catalyst was coated on a larger electrode area of 3 X 3 with the loading of 2 mg/cm² and subjected to bulk electrolysis at an applied potential of -0.77 V for about 5400 s. After electrolysis, the catalyst was removed from the carbon paper through sonication and post characterisation like XRD, XPS and EPR have been carried out. From XRD, it is quite clear that the SnO_2 rutile tetragonal phase has been retained even after electrolysis. Further Sn 3d XPS confirms the presence of Sn^{+4} with no other lower oxygen states like Sn/Sn^{+2} . This observation confirms the material stability. The retention of oxygen vacancy after electrolysis was confirmed by O 1s from XPS and EPR studies.

Fig. S13 XRD of SnO₂-CNT pH-11 before and after electrolysis at -0.77 V vs. RHE for about 5400 s

Fig. S14 Sn 3d XPS spectrum of SnO₂-CNT pH-11 after electrolysis at -0.77 V vs. RHE for about 5400 s (b) shows the O 1s spectra of SnO₂-CNT pH-11 before and after electrolysis at -0.77 V vs. RHE for about 5400 s.

Fig. S15 EPR spectra of SnO_2 -CNT pH-11 before and after electrolysis at -0.77 V vs. RHE for about 5400 s

Supplementary Tables

Table S1 depicts the comparison of electrocatalytic performance of our catalyst with the literature

Catalyst	Area	Loading	Electroly te	Potential (V)	Formate Faraday efficiency (%)	References
SnO ₂ /C	0.5 cm 0.5 cm	-	0.1 M KHCO ₃	-0.90 V vs RHE	54.00	[3]
SnO ₂ -CA-80	1.0 cm * 2.0	$\begin{array}{c} 2.0\pm0.2\\ \text{mg/cm}^2 \end{array}$	1 M KHCO ₃	-0.96 V vs RHE	76.00	[4]
SnO ₂ /CC	-	0.34 mg	0.5 M NaHCO ₃	-1.60 vs. Ag/AgCl	87.00	[5]
N- SnO ₂ /C	-	-	0.5 M NaHCO ₃	-0.65 V vs. RHE	90.00	[6]
SnO ₂ /Graphene	3 mm	2 mg cm ⁻²	0.1 M NaHCO ₃	-1.16 V vs. RHE	93.60	[7]
20 % SnO ₂ - MWCNT	1 cm ²	30 mg cm ⁻²	0.5 M NaHCO ₃	-1.7 V vs. SCE	27.20	[8]
SnO ₂ -MWCNT	-	20 mg cm ⁻²	0.1 M KHCO ₃	-1.40 V vs. SCE	64.00	[9]
SnOx@MWCN T-COOH	4 (2×2) cm ²)	3 mg/cm ²	0.5 M KHCO ₃	-1.25 V vs. RHE	77.00	[10]
SnO ₂ -0.14@N- rGO	1*1 cm ²	0.3 mg/cm ²	0.5 M NaHCO ₃	-0.80 V vs. RHE	77.00	[11]
SnO ₂ -N doped CNT	3 mm	-	0.1 M KHCO ₃	-1.30 V vs. Ag/AgCl	46.00	[12]
SnO ₂ /PC	1*1	1 mg/cm ²	0.5 M KHCO ₃	-0.86 V vs. RHE	92.00	[13]
SnO ₂ -CNT (pH- 11)	1*1	0.2 mg/cm^2	0.5 M KHCO ₃	-0.77 V vs. RHE	75.00	This work

Table S2 depicts the comparison of synthetic methodology and electrocatalytic performance
 of our catalyst with the other catalyst with oxygen vacancy

Catalyst	Methodology	Product	Potential	Efficiency	References
			(V) vs,	(%)	
			RHE		
Black	Heating at H ₂	Formate	-0.6 t0 -1.1	90.0	[14]
reduced	atm				
porous SnO ₂					
CuOx-Vo	Electrochemical	C_2H_4	-1.4	63	[15]
	reduction				
CuO/In ₂ O ₃	Different	CO	-0.895	85	[16]
	synthetic				
	environment				
m-SnO ₂	Nanocasting	Formate	-1.15	75	[17]
	method				
SnO ₂	Flame spray	Formate	-1.1	85	[18]
	pyrolysis				
Vo-rich	Lamellar	Formate	-0.87 vs,	85	[19]
Co ₃ O ₄	inorganic-		SCE		
	organic hybrid				
	intermediate				
	strategy				
ZnO	H ₂ plasma	CO	-1.1V	83	[20]
	treatment				
SnO ₂ -CNT	Microwave	Formate	-0.77	75	This work

References

- 1. New J. Chem., 2018, 42, 943—954.
- 2. Scientific Reports, 2019, 9, 12935.
- 3. J. Mater. Chem. A, 2018, 6, 20121–20127.
- 4. Appl. Catal. A Gen. 2017, 545 159–166.
- 5. Angew. Chem. Int. Ed. 2017, 56, 505 509.
- 6. J. Energy Chem. 2017, 26, 825–829.
- 7. J. Am. Chem. Soc. 2014, **136**, 1734–1737.
- 8. Journal of CO₂ Utilization 2016, 16, 346–353.
- 9. Electrochemistry Communications 2016, 65, 9–13.
- 10. ChemSusChem. 2019, 12 1443-1450.
- 11. Appl. Catal. B Environ. 2018, 239, 441-449.
- 12. Materials Letters, 2015, 141, 63-66.
- 13. J. Mater. Chem. A, 2019, 7, 18428
- 14. Applied Catalysis B: Environmental 2020, 260, 118134.
- 15. Small Methods 2018, 1800449
- 16. Catal. Sci. Technol., 2019, DOI:10.1039/c9cy01396b
- 17. ACS Sustainable Chem. Eng. 2018, 6, 1670–1679
- 18. Adv. Sci. 2019, 1900678
- 19. Nature communications, 2017, 8,14503.
- 20. Angew. Chem. Int. Ed. 2018, 57, 6054-6059.