Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2019

The role of acid and metal sites in hydrodeoxygenation of guaiacol over Ni/Beta catalysts

Penghui Yan,[†] Molly Meng-Jung Li,[†] Eric Kennedy,[†] Adesoji Adesina,[‡] Guangyu Zhao,[†] Adi Setiawan,[§] and Michael Stockenhuber^{*,†}

[†]Chemical Engineering, School of Engineering, The University of Newcastle, Callaghan, NSW, 2308, Australia

[‡]Atodatech LLC, Camarillo, California 93010, United States

[§]Mechanical Engineering, Faculty of Engineering, Universitas Malikussaleh, Bukit Indah,

Lhokseumawe, 24352, Indonesia

*Corresponding author: michael.stockenhuber@newcastle.edu.au

Figure S1. Experimental set up and photo of the mixed state of catalyst and feed (cap diameter: 3/4 inch, 0.2 g catalyst, 0.4 g guaiacol)

Mass-transfer limitations

The hydrodeoxygenation of guaiacol on the reduced Ni/BEA catalyst surface involves transfer of hydrogen into liquid phase and diffusion through the liquid phase to the catalyst through a boundary layer surrounding the catalyst surface. To investigate the intrinsic

activity of the catalyst, the internal mass transfer were examined by using two different particle sized catalyst, the external mass transfer limitations were checked by using different mass of catalyst but keep the same WHSV and GHSV. In addition, the mass transfer limitations were also examined by means of the Weisz-Prater (C_{WP}) and Mears Criterion (C_M) [1]. Both the experimental and calculation results show the hydrodeoxygenation under the employed reaction conditions is not limited by the mass transfer (internal mass transfer and external mass transfer).

Table S1. HDO of guaiacol over Ni/BEA catalyst with different particle size^[a]

Catalyst (23.2 wt% Ni/BEA-12.5)	X-guaiacol (%)	Y-cyclohexane (%)	Others (%)
250~450 μm	15.7	6.2	9.4
450~600 μm	15.1	5.8	7.8

^[a] Reaction conditions: H₂ (4.0 MPa), WHSV (3.12 min⁻¹), catalyst mass 0.05 g, H₂ flow rate (120 mL/min)

		, ,	
Catalyst (23.2 wt% Ni/BEA-12.5)	X-guaiacol	Y-cyclohexane (%)	Others (%)
	(%)		
33.3 mg	15.2	6.5	7.5
50.0 mg	15.1	5.8	7.8
62.5 mg	14.8	6.0	8.0

Table S2. HDO of guaiacol over Ni/BEA catalyst with different catalyst mass^[a]

[a] Reaction conditions: H₂ (4.0 MPa), WHSV (3.12 min⁻¹), GHSV (1500 min⁻¹), catalyst particle size (450~600 μ m)

Calculation of Weisz-Prater Criterion and Mears Criterion

The detailed calculations for the Weisz-Prater Criterion and Mears Criterion are presented below.

(1) The absence of mass transport resistances was checked by Weisz-Prater Criterion (C_{wp}) for internal diffusion and Mears Criterion (C_M) for external diffusion, respectively.

$$C_{\rm WP} = \frac{r_{obs}\rho_{\rm c}R_{\rm P}^2}{D_{\rm eff}C_{\rm S}}$$
$$C_{\rm M} = \frac{r_{obs}\rho_{\rm b}R_{\rm P}n}{k_{\rm c}C_{\rm Ab}}$$

Where r_{obs} is observed reaction rate, mol kg⁻¹ s⁻¹; n is the reaction order; R_p is the catalyst particle radius, m; ρ_c is the bulk density of catalyst bed, kg m⁻³; ρ_b is the bulk density of catalyst bed, kg m⁻³; ρ_b is the bulk density of catalyst bed, kg m⁻³, ρ_b =(1- ϵ) ρ_c ; ϵ is porosity; C_s is liquid concentration of guaiacol at the external surface of the catalyst, mol m⁻³; C_{Ab} is liquid concentration of guaiacol, mol m⁻³; k_c is the external mass transfer coefficient, m s⁻¹.

In this work, a H_2 gas flow rate of 120 mL min⁻¹, a catalyst particle size of 0.25-0.50 mm.

For the Ni/BEA catalyst,

^{*R*}_P=(250+500)/2=187 um=1.87 × 10⁻⁴ m, *n*=1,

$$\varepsilon$$
=0.72, $R_{guaiacol}$ =4.06 × 10⁻² mol·kg⁻¹·s⁻¹, ρ_{b} =0.625 × 10³ kg·m⁻³,

 $\rho_{c}=2.23 \times 10^{3} \text{ kg} \cdot \text{m}^{-3},$

$$C_{S} \approx C_{Ab} = 4875 \text{ mol} \cdot \text{m}^{-3}$$
,

the reaction liquid density, ρ =1.11 × 10³ kg·m⁻³, the reactor inner diameter, 4.57 × 10⁻³ m, the reactant flow rate, 7.2 mL·h⁻¹, viscosity, µ=3.129 × 10⁻⁵ Pa·s

$$u = \frac{7.2 \times 10^{-6}}{3600 \times 3.14 \times (2.28 \times 10^{-3})^2} = 1.22 \times 10^{-4} \, m \, s^{-1}$$

fluid velocity
$$D_{AB} = 9700 r \sqrt{\frac{T}{M}} = 9700 \times 8.0 \times 10^{-7} \times \sqrt{\frac{503}{128}} = 1.53 \times 10^{-2} \, cm^2 \, s^{-1}$$

$$D_{\text{eff}} \approx D_{\text{AB}} = 1.53 \times 10^{-6} \cdot \text{m}^2 \, \text{s}^{-1}$$

The external mass transfer coefficient is calculated below.

$$\frac{Sh\varepsilon}{1-\varepsilon} = \left(\frac{R_e}{1-\varepsilon}\right)^{1/2} Sc^{1/3}$$

$$\frac{k_c R_p}{D_{AB}} \left(\frac{\varepsilon}{1-\varepsilon}\right) = \left[\frac{\rho u R_p}{\mu(1-\varepsilon)}\right]^{1/2} \left(\frac{\mu}{\rho D_{AB}}\right)^{1/3}$$

$$\frac{\rho u R_p}{\mu(1-\varepsilon)} = \frac{1.11 \times 10^3 \times 1.22 \times 10^{-4} \times 1.87 \times 10^{-4}}{3.129 \times 10^{-5}(1-0.72)} = 2.9$$

$$\frac{\mu}{\rho D_{AB}} = \frac{3.129 \times 10^{-5}}{1.11 \times 10^{-3} \times 1.53 \times 10^{-6}} = 0.01842$$

$$\frac{k_c R_p}{D_{AB}} \left(\frac{\varepsilon}{1-\varepsilon}\right) = \frac{k_c \times 1.87 \times 10^{-4}}{1.53 \times 10^{-6}} \left(\frac{0.72}{1-0.72}\right) = 2.9^{1/2} \times 0.01842^{1/3} = 1.7 \times 0.264$$

obtained, $k_c = 1.43 \times 10^{-3} \text{ m} \cdot \text{s}^{-1}$

Therefore,

$$C_{WP} = \frac{R_{guaiacol}\rho_c R_P^2}{D_{eff}C_S} = \frac{4.06 \times 10^{-2} \times 2.23 \times 10^3 \times (1.87 \times 10^{-4})^2}{1.53 \times 10^{-6} \times 4875} = 0.0004244 < 1$$

$$C_{M} = \frac{R_{guaicol}\rho_{b}R_{P}n}{k_{c}C_{Ab}} = \frac{4.06 \times 10^{-2} \times 0.625 \times 10^{3} \times 1.87 \times 10^{-4} \times 1}{1.43 \times 10^{-3} \times 4875} = 0.0006806 < 0.15$$

Generally, according to the Weisz-Prater Criterion and Mears Criterion, when the calculation value for C_{WP} and C_{M} is below 1 and 0.15, respectively, the internal and external diffusion limitations can be neglected during the kinetic experiments. The C_{WP} and C_{M} are 0.0004244 and 0.0006806, respectively, under the above experimental conditions, suggesting that the internal and external diffusion limitations could be neglected during the kinetic experiments. Therefore, the reaction rate could be used to represent the intrinsic activity of the catalysts.

Analysis of heat transfer effects

The radial heat transfer effect was estimated by the Mear criterion (C_{MH}) [2] which is defined by the following equation:

$$C_{MH} = \left| \frac{-\Delta H (-r)(1-\varepsilon)R^2}{\lambda T (1+b)} \right| < 0.4 \frac{RT}{E_a}$$

Where Δ H is heat of reaction, r is observed reaction rate, R is the inner radius of the tubular reactor, ε is the catalyst bed porosity, and the λ is the effective thermal conductivity of porous catalyst, b is the ratio of diluent to catalyst volume, and the R is the gas constant. $C_7H_8O_2 + 5H_2 = C_6H_{12} + H_2O + CH_3OH$ Δ H_fC₇H₈O₂=-307.95 kJ/mol, Δ H_fH₂=0 kJ/mol, Δ H_fC₆H₁₂=-156.4 kJ/mol, H_fH₂O=-241.8 kJ/mol, H_fCH₃OH=-201 kJ/mol Δ H= Δ H_f(products)- Δ H_f(reactants)=-291.25 KJ ε = 0.72 r= 4.06 × 10⁻² mol/kg· s = 25 mol/m³·s R= 4.57 × 10⁻³ m λ = 0.1 W/m·K [3], b= 0 T=503 K

E_a= 40.279 kJ/mol (calculated based on Arrhenius equation)

$$\left|\frac{-\Delta H(-r)(1-\varepsilon)R^2}{\lambda T(1+b)}\right| = \frac{291.25 \times 25 \times (1-0.72) \times (4.57 \times 10^{-3})^2}{0.1 \times 503 \times 1} = 8.46 \times 10^{-4}$$

$$0.4\frac{RT}{E_a} = 0.4 \times \frac{8.314 \times 503}{40279} = 0.0415$$

The calculation results showed that the $C_{\mbox{\scriptsize MH}}$ was 2 orders of magnitude lower than the $0.4 \frac{RT}{E_a}$, therefore, radial heat-transfer effect in the HDO reaction was not a factor.

		p				
Sample	T-Plot	T-Plot	Pore	T-plot	Averag	D _{Ni} c
	Micro	mesopore	volum	micropore	e pore	(%)
	pore	surface	eb	volume ^a	sizeb	
	area ^a	area ^a	(cm³/g	(cm³/g)	(nm)	
	(m²/g)	(m²/g))			
Beta-12.5	315	207	0.37	0.17	8.1	-
Beta-25	277	192	0.34	0.15	8.8	-
Beta-175	312	191	0.12	0.17	4.0	-
Reduced 15.7 wt%	243	147	0.29	0.15	8.6	6.7
Ni/Beta-12.5						
Reduced 23.2 wt%	229	139	0.31	0.12	9.6	4.6
Ni/Beta-12.5						
Reduced 15.7 wt%	221	124	0.26	0.13	8.6	8.6
Ni/Beta-25						
Reduced 15.7 wt%	257	123	0.09	0.15	4.1	3.7
Ni/Beta-175						
ZSM-5-15	198	129	0.11	0.09	4.6	-
Reduced 15.7 wt%	170	66	0.06	0.10	5.1	-
Ni/ZSM-5(Si/Al=15)						

	Table S3.	Textural	properties	of reduced	and	used	catal	/sts
--	-----------	----------	------------	------------	-----	------	-------	------

^a calculated by t-plot method;

^b calculated by BJH adsorption theory (1.7 ~300 nm);

^cCalculated by chemisorption, dispersion of Ni was calculated by assuming a stoichiometry of CO/Ni=1/1.

(b)

Figure S2. TEM of calcined (a) and reduced (b) 15.7 wt% Ni-Beta-12.5 catalyst

Figure S3. Ammonia temperature programmed desorption profile of H-Beta-12.5 zeolite, m/z=16, the black line - original trace, the red line - the composite sum of fitted peaks, and the green line - fitted peaks

Table S4. Estimated heats of desorption of calcined Ni/Beta catalysts						
Catalyst	Peak	T_{\max}^{a} (K)	Δ <i>E</i> _{des} ^b (kJ mol⁻¹)			
	LTP	493	123.7			
15.7 wt% Ni-Beta-12.5	MTP	563	141.9			
	HTP	712	180.9			
	LTP	492	123.5			
15.7 wt% Ni-Beta-25	MTP	575	145.0			
	HTP	688	174.6			
15.7 wt% Ni-Beta-175	LTP	528	132.8			
	MTP	645	163.3			

^a Temperature at peak maxima of desorption from NH₃-TPD; ^b Heat of ammonia

desorption, $\frac{\Delta E_{des}}{RT_{max}} = ln \frac{v 1 T_{max}}{\beta}$ -3.64, v₁=10¹³ s⁻¹

 Table S5. Acid characterization of parent Beta and reduced Ni-based catalysts

 measured by IR spectra of adsorbed ammonia^[a]

Sample	Acid sites determined by NH ₃ -FTIR (mmol/g)		
	Brønsted	Lewis	
HBeta-12.5	0.81	0.24	
HBeta-25	0.71	0.10	
HBeta-175	0.25	0	
reduced 15.7 wt% Ni/Beta-12.5	0.60	0.56	
reduced 15.7 wt% Ni/Beta-25	0.50	0.49	
reduced 15.7 wt% Ni/Beta-175	0.26	0.09	

Figure S4. XRD patterns of HBeta-12.5 and ion-exchanged Ni/Beta-12.5 samples

Figure S5. XPS of pre-reduced 15.7 wt% Ni/Beta-12.5 sample

Figure S6. XRD patterns of reduced Ni/Beta-12.5 samples

Table S6. The performance results of HDO of guaiacol over Ni/Beta-12.5 and supportsusing a continuous flow reactor^[a]

Chemicals			Cataly	sts		
	lon-	2.3 wt%	HBeta-	HBeta-	HBeta-	Al ₂ O ₃
	exchanged	Ni/Beta-	12.5	25	175	2 0
	Ni/Beta-	12.5				
	12.5					
Conversion (%)	19.5	23.4	14.9	13.9	11.7	17.8
Methylcyclopentane (%)	0.46	0	0	0	0	0
Cyclohexane (%)	0.75	0	0	0	0	0
Cyclohexene (%)	0.57	0	0	0	0	0
Toluene (%)	0.33	0.45	0	0	0	0
Anisole (%)	0.41	0.46	0.21	0	0	0
Phenol (%)	0.68	0.68	0.12	0	0	0
p-Cresol (%)	0.77	0.56	0.46	0.42	0.39	0.40
2,6-Dimethylphenol (%)	0.12	0.13	0.10	0.10	0.10	0.08
1,2-Dimethoxybenzene	4.58	5.00	3.45	3.20	3.88	0.44
(%)						
2-Methoxy-6-	1.58	2.11	1.36	0.87	1.19	1.15
methylphenol (%)						
2-Methoxy-5-	0.98	1.31	0.99	0.60	0.83	0.07
methylphenol (%)						
Creosol (%)	1.09	1.49	0.90	0.14	0.77	0.43
Catechol (%)	3.57	6.85	4.71	4.31	4.10	5.42
4-Ethyl-2-methoxy-	0	0	0	0	0	0.27
phenol (%)						
2,3-Dimethoxytoluene	0.18	0.15	0.07	0	0.07	0.07
(%)						
3-Methyl-1,2-	0.66	1.39	0.82	0.53	0.32	2.67
benzenediol (%)						
4-Methyl-1,2-	0.49	1.10	0.62	0.31	0.28	0.06
benzenediol (%)						

4-Ethyl-2-	0.15	0.23	0.09	0	0.06	0
2,5-Dimethyl-1,4-	0.22	0.44	0.16	0	0	1.75
benzenediol (%)						
2,5-Dimethoxytoluene	0.09	0.18	0.07	0	0	0
(%)						
4,5-Dimethy-1,3-	0.11	0	0	0	0	0.12
benzendiol (%)						
2,3,4,6-	0	0.22	0	0	0	0.14
Tetramethylphenol (%)						
2,3,5-Trimethyl-1,4-	0.07	0.11	0.05	0.27	0.23	0.46
benzenediol (%)						
2-Isopropyl-1-methoxy-	0.11	0.14	0	0	0	0.42
4-methylbenzene (%)						

[a] Reaction conditions: WHSV (0.26 min⁻¹), reaction temperature (300 °C), catalyst (0.1 g), guaiacol (0.026 g/min), 4.0 MPa H_2 , H_2 flow rate (120 mL/min).

Reference

[1] W.Q Fu, L. Zhang, D. F. Wu, M. Xiang, Q. Zhuo, K. Huang, Z. D. Tao, T. D. Tang, J. Catal. 330 (2015) 423

[2] D. E. Mears, Ind. Eng. Chem. Process Des. Dev. 10 (1971) 541
[3] N. Joshi, A. Lawal, Ind. Eng. Chem. Res. 52 (2013) 4049