Supplementary Information

Study on Carbon Cycle of Hydrogen Supply System over Supported Pt Catalyst: Methylcyclohexane-Toluene-Hydrogen Cycle

Xiaotong Zhang, Ning He, Long Lin, Quanren Zhu, Gang Wang, Hongchen Guo*

Department of Catalytical Chemistry and Engineering, State Key Laboratory of Fine

Chemicals, Dalian University of Technology, Dalian 116024, Liaoning, PR China

* Corresponding author. Tel & Fax: +86-411-84986120

Mobile: +8618698614478

E-mail: hongchenguo@163.com

	Pt content wt%	Cu content wt%
Pt/S-1	0.34	0
Cu/S-1	0	0.38
Cu-Pt/S-1	0.44	0.37
Cu-Pt/SiO ₂	1.41	1.41

 Table S1 Chemical compositions of catalysts from ICP analysis

Table S2 Comparison	on	MCH	dehydrogenation	over	Cu-Pt/S-1	with	other	Pt
supported catalysts from	n lite	ratures.	23-30					

No.	Catalyst	Reaction	Conversion/H ₂	Ref.
		conditions	evolution rate	
23	Pt/SBA-15	T=300 °C,catalyst	65.0%/96.4	Chen AB, Zhang WP, Li XY,
	(Pt 3.1 wt%)	weight=0.05 g,	mmol/g _{Pt} /min	Tan DL, Han XW, Bao XH.
		WHSV =27.1 h ⁻¹		One-pot encapsulation of Pt
		Hydrogen was		nanoparticles into the
		used as carrier gas		mesochannels of SBA-15 and
				their catalytic dehydrogenation
				of methylcyclohexane. Catal
				Lett. 2007;119(1-2):159-64.[1]
24	Pt/activated	T=300 °C, catalyst	42%/121.9	Li XY, Ma D, Bao XH.
	carbon (Pt	weight = 0.03 g,	mmol/g _{Pt} /min	Dispersion of Pt catalysts
	1wt%)	MCH rate $= 0.03$		supported on activated carbon
		mL/min		and their catalytic performance
				in methylcyclohexane
				dehydrogenation. Chinese J
				Catal. 2008;29(3):259-63.[2]
25	Pt/La _{0.7} Y _{0.3} NiO	T=350 °C,catalyst	14%/45.3	Shukla AA, Gosavi PV, Pande
	3	weight=0.3 g,	mmol/g _{Pt} /min	JV, Kumar VP, Chary KVR,
	(Pt 1 wt%)	pulse injection of		Biniwale RB. Efficient
		МСН		hydrogen supply through
				catalytic dehydrogenation of
				methylcyclohexane over
				Pt/metal oxide catalysts. Int J
				Hydrog Energy.
				2010;35(9):4020-6.[3]
26	Pt/pyrolytic	T=300 °C, catalyst	95%/300	Zhang C, Liang XQ, Liu SX.
	waste tire char	weight $=0.554$ g,	mmol/g _{Pt} /min	Hydrogen production by
	(Pt 0.4 wt%)	MCH rate =1.8		catalytic dehydrogenation of
		mL/h, WHSV=2.5		methylcyclohexane over Pt
		h-1		catalysts supported on
				pyrolytic waste tire char. Int J

				Hydrog Energy.
				2011;36(15):8902-7.[4]
27	Pt/Mo ₁₀ -SiO ₂	T=400 °C, catalyst	10%/30	Boufaden N, Akkari R,
	(Pt 5 wt%)	weight =0.10 g,	mmol/g _{Pt} /min	Pawelec B, Fierro JLG, Zina
		WHSV=92.4 h ⁻¹		MS, Ghorbel A.
		H ₂ pressure 2.2		Dehydrogenation of
		MPa		methylcyclohexane to toluene
				over partially reduced silica-
				supported Pt-Mo catalysts. J
				Mol Catal a-Chem.
				2016;420:96-106.[5]
28	Pt/ACC	T=350 °C spray	26.8%/ 373.1	Patil SP, Bindwal AB, Pakade
	(Pt 5wt%)	pulse reactor	mmol/g _{Pt} /min	YB, Biniwale RB. On H ₂
				supply through liquid organic
				hydrides - Effect of functional
				groups. Int J Hydrog Energy.
				2017;42(25):16214-24.[6]
29	PtSn-5/Mg-Al-	T=300 °C, catalyst	90.5%/262.1	Yan J, Wang WY, Miao L,
	O-350	weight =0.5 g,	mmol/g _{met} /min	Wu K, Chen GL, Huang YP,
	(Pt 2wt%)	MCH rate =0.1		et al. Dehydrogenation of
		mL/min,		methylcyclohexane over Pt-Sn
		WHSV=9.2 h ⁻¹		supported on Mg-Al mixed
				metal oxides derived from
				layered double hydroxides. Int
				J Hydrog Energy.
				2018;43(19):9343-52.[7]
30	Pt/Ce-Mg-Al-O	T=350 °C, catalyst	98.5%/1358.6	Wang W, Miao L, Wu K,
	(Pt 0.4wt%)	weight =0.5 g,	mmol/g _{Pt} /min	Chen G, Huang Y, Yang Y.
		MCH rate =0.1		Hydrogen evolution in the
		mL/min,		dehydrogenation of
		WHSV=9.2 h ⁻¹		methylcyclohexane over
				Pt/Ce-Mg-Al-O catalysts
				derived from their layered
				double hydroxides. Int J
				Hydrog Energy.
				2019;44(5):2918-25.[8]
this	Cu-Pt/S-1	T=400 °C, catalyst	92%/430	This work
work	(Pt 0.4wt%)	weight=1.0 g,	mmol/g _{Pt} /min	
		MCH rate =0.1		
		mL/min, WHSV=		
		4.6 h ⁻¹		

Fig. S1 H₂ evolution rate over 10 hours on Cu-Pt/S-1 and Cu-Pt/SiO₂ (T=350 $^{\circ}$ C, P=101 KPa, WHSV=4.6 h⁻¹).

Table S3 Physicochemical properties of Cu-Pt/S-1 and Cu-Pt/SiO₂.

Samples	S _{BET} §	S _{micro} §§	S _{exter} §§§
	(m²/g)	(m²/g)	(m²/g)
Cu-Pt/S-1	415.1	267.6	147.5
Cu-Pt/SiO ₂	190.1	19.5	170.5

[§] The total surface area was calculated from BET method.

^{§§} The microspore and external surface area were obtained from the t-plot method.

Table S4. Comparison on toluene hydrogenation over Pt/S-1 with other Pt supported	ł
catalysts from literatures based on toluene conversion and H ₂ storage rate. ^{13, 32-38}	

Ref	Catalyst	Reaction	Conversion/	Ref.
No.		conditions	hydrogen storage	
			rate	
32	Pt/CBV-780	T-120 °C	~100%/1574	Thomas K, Binet C,
52		1-120 C,	10070/1071	Chevreau T, Cornet D,
	$(Pt 0.3 wt^{0})$	toluene flow	mmol/g _{Pt} /min	Gilson JP. Hydrogenation of
	(1 t 0.5 wt/0)			toluene over supported Pt and
		rate=0.3 ml/h		Pd catalysts: Influence of
		catalyst		structural factors on the
		j~-		sulfur tolerance. J Catal.
		weight=0.03g,		2002;212(1):63-75.

		total pressure=3		
		MPa fixed bed		
13	3Pt3Pd/HBE	T=150 ℃,	~100%/102	Loiha S, Foettinger K, Zorn K, Klysubun W, Rupprechter
	A(Pt 3wt%)	catalyst	mmol/g _{Pt} /min	G, Wittayakun J. Catalytic enhancement of platinum
		weight=0.07g,		supported on zeolite beta for
		H_2 /toluene=28,		addition of palladium.
		fixed bed		Journal of Industrial and Engineering Chemistry. 2009;15(6):819-23.
33	Pt/H-Y	T=110 °C,	75%/363	Mediavilla M, Melo L, Brito JL, Moronta D, Solano R,
	(Pt 0.8wt%)	$P(H_2)/P(toluene)$	mmol/g _{Pt} /min	Gonzalez I, et al. Synthesis of Pt and Pt-Sn catalysts
		= 4, fixed bed		supported on H-Y zeolite
				induced by microwave
				Mat. 2013; 170: 189-93.
34	Pt-Pd/ Zr-	T=225 ℃,	~100%/360	Roy S, Datta S. Hydrogenation of Toluene on
	HMS	catalyst	mmol/g _{met} /min	Zirconium-Modified
	(Pt 0.15wt%)	weight=5 g,		Supported Platinum and
		hydrogen		Palladium Catalysts. Ind Eng Chem Res. 2013: 52 (49):
		pressure =2 MPa,		17360-8.
		fixed bed		
35	Pt1Ru1.5	Room	85%/2.6	Stanley JNG, Heinroth F, Weber CC, Masters AF,
	(Pt 1.6wt%)	temperature,	mmol/g _{met} /min	Maschmeyer T. Robust
		catalyst		bimetallic Pt-Ru catalysts for the rapid hydrogenation of
		weight=0.2 g,		toluene and tetralin at
		hydrogen		ambient temperature and pressure. Appl Catal a-Gen.
		pressure=0.1		2013;454:46-52.
		MPa, in ethanol		

36	Pt/TiO ₂ -SiO ₂	T=200 °C,	Small/0.6	Gonda M, Ohshima M-a, Kurokawa H, Miura H
	(Pt 5.0wt%)	catalyst	mmol/g _{Pt} /min	Toluene hydrogenation over
		weight=0.5 g,		Pd and Pt catalysts as a model hydrogen storage
		hydrogen		process using low grade
		pressure =1 MPa,		hydrogen containing catalyst inhibitors Int I Hydrog
		100 mL		Energy. 2014; 39(29): 16339-
		stainless-steel		46.
		autoclave		
37	Pt-Pd/SiO ₂ -	T=150 ℃,	88%/407mmol/g _{Pt} /m	Kumar SAK, John M, Pai SM, Niwate Y, Newalkar BL,
	Al ₂ O ₃	catalyst	in	Low temperature
	(Pt 0.2wt%)	weight=5 g,		hydrogenation of aromatics over Pt-Pd/SiO ₂ -Al ₂ O ₃
		hydrogen		catalyst. Fuel Processing
		pressure =2 MPa,		9.
		fixed bed		
38	Pt/Al ₂ O ₃ -	T=110 ℃,	<15%/144	Mendes PSF, Gregorio AFC,
	HUSY	H ₂ /toluene=45,	mmol/g _{pt} /min	JM, Ribeiro MF. Elucidation
		P=0 1MPa		of the zeolite role on the
	(Pt 0.3/wt%)	1 0.11 /11 u		hydrogenating activity of Pt- catalysts. Catal Commun.
				2017; 89:152-5.
this	Pt/S-1	T=150 ℃,	~100%/1271	This work
work	(Pt 0.3 wt%)	$n(H_2)/n(toluene)$	10070/1271	
		$\approx 3.1, P (H_2)$ =1.5MPa, 70 mL	mmol/g _{pt} /min	
		stainless-steel		
		autoclave		

Fig. S2 TEM images of fresh and spent catalysts: Pt/S-1(a, b), Cu-Pt/S-1 (c, d), spent Pt/S-1 (e, f) (after reaction 10 hours at 350 $^{\circ}$ C) and spent Cu-Pt/S-1 (g, h) (after reaction 10 hours at 350 $^{\circ}$ C).

Fig. S3 Hydroxyl IR spectrums of S-1 and reduced Cu-Pt/S-1.

Fig. S4 X-ray diffraction patterns of Cu-Pt/S-1, spent Cu-Pt/S-1, S-1 and CuPt alloy (JCPDS NO.48-1549).