Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2019

Supporting information for

A versatile mono-quaternary ammonium salt as mesoporogen for the synthesis of hierarchical zeolites

Aleksei Bolshakov, Arno J.F. van Hoof, Brahim Mezari, Nikolay Kosinov and Emiel J.M. Hensen*

Laboratory of Inorganic Materials and Catalysis, Schuit Institute of Catalysis, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands

Corresponding author:

Emiel J.M. Hensen Tel: +31-40-2475178 Email: e.j.m.hensen@tue.nl

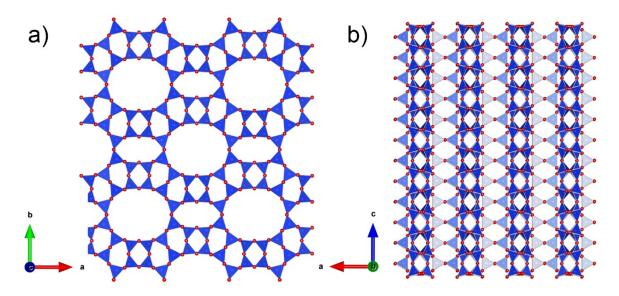


Figure S1. MOR structure and its a) 12 membered ring and b) 8 membered ring side pockets.

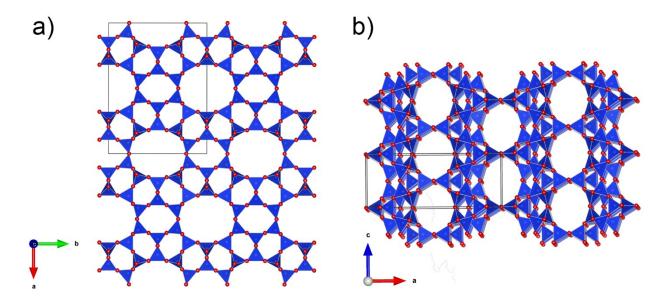


Figure S2. FER structure and its a) 10 membered ring and b) 8 membered ring channels.

Zeolite	V_{tot} , (cm ³ g ⁻¹)	V_{micro} (cm ³ g ⁻¹)	$V_{\text{meso}},$ $(\text{cm}^3\text{g}^{-1})$	S_{BET} , (m ² g ⁻¹)	$S_{ext},$ (m ² g ⁻¹)
FER-C	0.16	0.11	0.05	343.1	38.3
FER-0.10	0.30	0.09	0.21	341.2	130.2
FER-0.15	0.33	0.08	0.25	316.3	153.8

Table S1. Textural properties of FER samples synthesized at different SDA concentration.

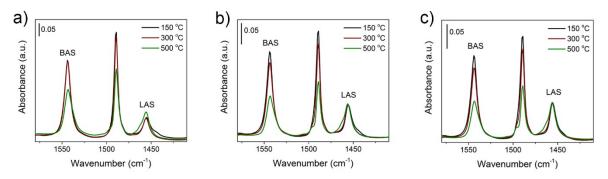
 \overline{V}_{tot} total pore volume at $p/p_0 = 0.95$

V_{micro} micropore volume calculated by the *t-plot* method

 V_{meso} mesopore volume calculated by the *BJH* method

S_{BET} Brunauer-Emmett-Teller (BET) surface area ($p/p_0 = 0.05 - 0.25$)

S_{ext} external surface area determined by the *t-plot* method.


Table S2. Properties of synthesized samples determined by ICP-OES analysis and ²⁷Al MAS NMR.

Zeolite	Si/Al	Al distribution [*] (%)		
	(ICP)	tetra Al ^{IV}	octa Al ^{VI}	
FER-C	9.9	78.7	21.3	
FER-0.10	9.4	72.1	27.9	
FER-0.15	10.5	71.6	28.4	

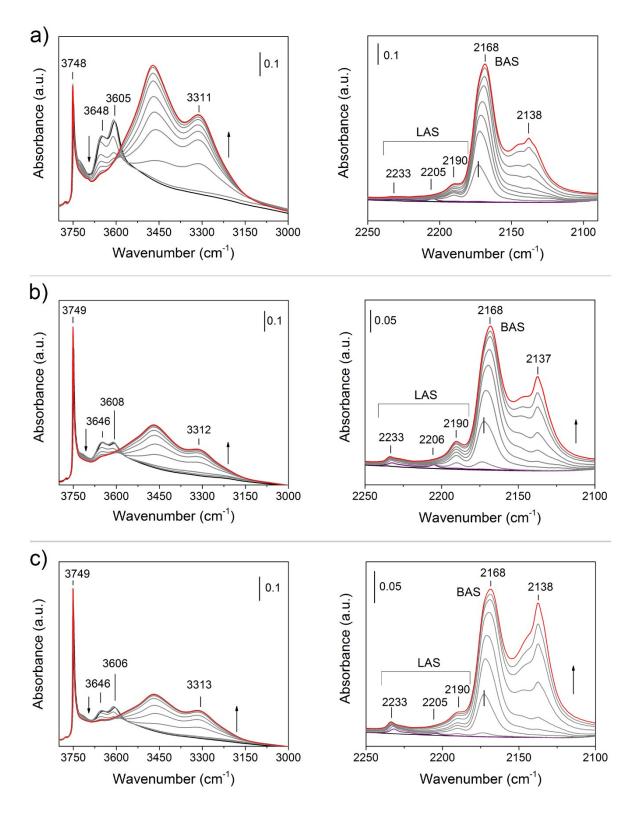
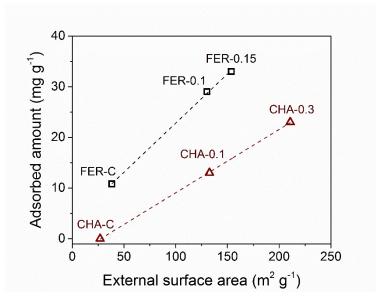

* Al tetra determined by integration of NMR signal between 20 and 100 ppm; Al-octa determined by integration of NMR signal between 20 and -50 ppm.

Table S3. Acidic properties of the zeolites determined by IR spectroscopy of adsorbed pyridine and H₂ chemisorption.


Zeolite	BAS (mmol g ⁻¹)			LAS (mmol g ⁻¹)		
	150 °C	300 °C	500 °C	150 °C	300 °C	500 °C
FER-C	0.45	0.45	0.33	0.06	0.06	0.09
FER-0.10	0.36	0.32	0.20	0.07	0.06	0.08
FER-0.15	0.31	0.26	0.16	0.07	0.06	0.07

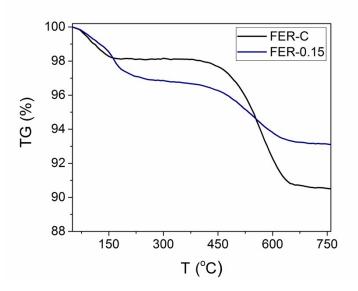

Figure S3. Infrared spectra of pyridine adsorbed on the proton forms of a) FER-C, b) FER-0.10 and c) FER-0.15 sample after evacuation at 150 °C, 300 °C and 500 °C, IR spectra were recorded at 150 °C.

Figure S4. (Left) hydroxyl and (right) CO stretch regions of FTIR spectra of a) FER-C, b) FER-0.10 and c) FER-0.15 as a function of the CO coverage.

Figure S5. Correlation between the external surface area of FER (black) and CHA (red) samples and initial uptake of benzene after 2 minutes of He/benzene exposure.

Figure S6. Thermogravimetric analysis (TGA) of the spent FER catalysts after 108 h of Butanol conversion. The weight losses for FER-C and FER-0.15 are 9.5 % and 6.9 %, respectively.

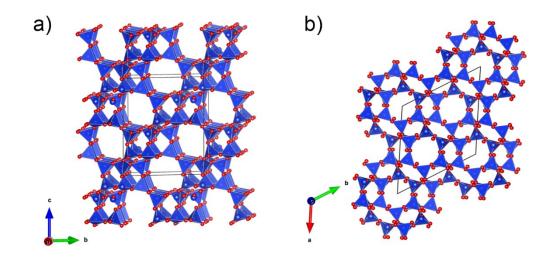


Figure S7. CHA structure a) viewed along *a*-axis and b) its projection along [001].

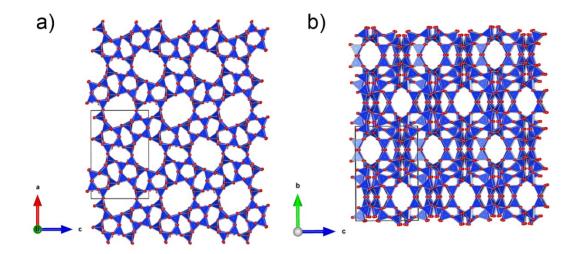


Figure S8. MFI structure a) viewed along *b*-axis and b) its projection along [100].

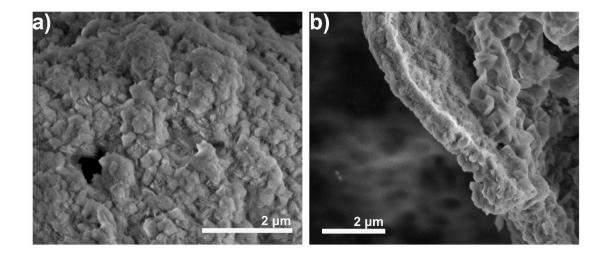
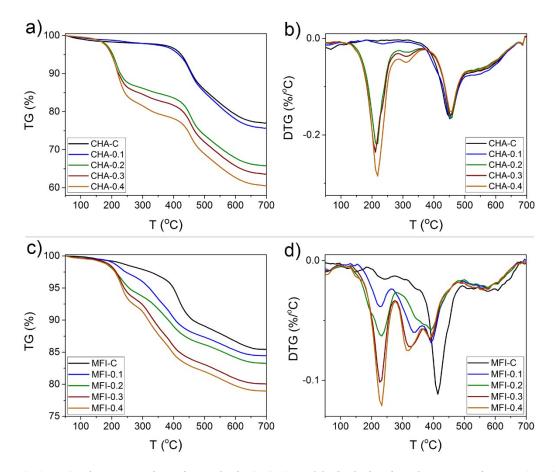
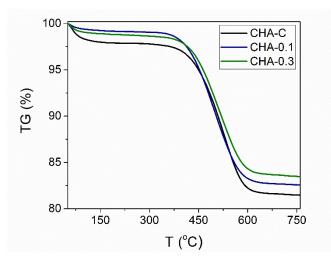




Figure S9. SEM images of calcined MFI zeolites: a) MFI-0.3 and b) MFI-0.4.

Figure S10. a,c) Thermogravimetric analysis (TGA) and b,d) derivative thermogravimetry (DTG) of the as-synthesized CHA (a,b) and MFI (c,d) samples obtained at different concentration of C_{16} NMP. The weight losses for CHA-C, CHA-0.1, CHA-0.2, CHA-0.3 and CHA-0.4 are 22.9 %, 24.2 %, 34.1 %, 36.3 % and 39.3 %, respectively. The weight losses for MFI-C, MFI-0.1, MFI-0.2, MFI-0.3 and MFI-0.4 are 14.6 %, 15.5 %, 16.7 %, 19.9 % and 21.0 %, respectively.

Figure S11. Thermogravimetric analysis (TGA) of the spent CHA catalysts after 16.8 h of methanol conversion. The weight losses for CHA-C, CHA-0.1 and CHA-0.3 are 18.6 %, 17.4 % and 16.5 %, respectively.

Zeolite	V _{tot} ,	V _{micro}	V _{meso} ,	S _{BET} ,	S _{ext} ,
Zeonte	$(cm^3 g^{-1})$	$(cm^3 g^{-1})$	$(cm^3 g^{-1})$	$(m^2 g^{-1})$	$(m^2 g^{-1})$
CHA-C	0.28	0.25	0.03	736.6	26.9
CHA-0.1	0.31	0.19	0.11	672.3	132.6
СНА-0.2	0.33	0.19	0.13	689.5	166.9
СНА-0.3	0.36	0.18	0.17	668.1	210.7
CHA-0.4	0.43	0.18	0.24	682.1	180.4
CHA-0.5	0.44	0.18	0.24	679.6	162.4
MFI-C	0.18	0.16	0.02	317.1	6.6
MFI-0.1	0.25	0.13	0.13	315.8	61.0
MFI-0.2	0.28	0.12	0.17	317.4	104.5
MFI-0.3	0.25	0.10	0.15	316.4	118.2

Table S4. Textural properties of CHA and MFI samples synthesized at different SDA concentration.

V_{tot} total pore volume at $p/p_0 = 0.95$

V_{micro} micropore volume calculated by the *t-plot* method

 V_{meso} mesopore volume calculated by the *BJH* method

S_{BET} Brunauer-Emmett-Teller (BET) surface area $(p/p_0 = 0.05-0.25)$

 S_{ext} external surface area determined by the *t-plot* method.

analysis and ²⁷Al-, ¹H MAS NMR spectroscopy. Zeolite Si/Al Al distribution^{*a*} (%) BAS^{b} tetra Al^{IV} octa Al VI (ICP) $(\text{mmol } g^{-1})$ CHA-C 18.7 88.3 11.7 0.70 CHA-0.1 19.8 81.4 18.6 0.40 13.2 CHA-0.3 21.2 86.8 0.61 CHA-0.4 23.2 83.8 16.2 -

Table S5. Physico-chemical properties of CHA and MFI zeolites determined by ICP-OES elemental analysis and ²⁷Al-, ¹H MAS NMR spectroscopy.

^a Al tetra determined by integration of NMR signal between 20 and 100 ppm; Al-octa determined by integration of NMR signal between 20 and -50 ppm

90.2

86.8

89.3

9.8

13.2

10.7

0.37

0.30

0.27

^b density of Brønsted acid sites calculated from ¹H MAS NMR spectra.

38.6

40.7

40.9

MFI-C

MFI-0.1

MFI-0.2

Table S6. Lifetime, product selectivity of MTH reaction after 2 h time on stream over CHA samples.

Zeolite	$t_{50}^{a}(h)$	Selectivity (%)					
		$C_2 \qquad C_2^= \qquad C_3 \qquad C_3^= \qquad C_4 - C_6$					
CHA-C	5.2	1.0	42.4	1.9	37.6	17.1	
CHA-0.1	12.0	0.9	43.1	0.4	39.4	16.2	
СНА-0.3	14.0	1.0	43.7	0.3	39.0	16.0	

^{*a*} lifetime taken as time to reach methanol conversion of 50 %.

Table S7. Lifetime, product selectivity of MTH reaction after 2 h time on stream over MFI samples.

Zeolite	$t_{50}{}^{a}(h)$	Selectivity (%)					
		C_2 $C_2^=$ C_3 $C_3^=$ C_{4+} Aromatics					
MFI-C	26.0	0.2	8.6	1.8	35.9	50.3	3.2
MFI-0.1	75.9	0.2	7.6	1.7	33.5	52.7	4.3
MFI-0.2	63.7	0.2	7.8	2.2	31.4	53.9	4.5

^{*a*} lifetime taken as time to reach methanol conversion of 50 %.