Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2019

Supporting information Chemoselective reduction of quinoline over Rh-C₆₀ nanocatalysts

Zhishan Luo,^a Yuanyuan Min,^a Divya Nechiyil,^b Wolfgang Bacsa,^b Yann Tison,^c Hervé Martinez,^c Pierre Lecante,^b Iann C. Gerber, ^d Philippe Serp,^a and M. Rosa Axet^{a*}

^a LCC-CNRS, Université de Toulouse, CNRS, INPT, Toulouse, France

^b Centre d'élaboration des matériaux et d'études structurales UPR CNRS 8011, 29 Rue Jeanne-Marvig, BP 4347, 31055 Toulouse, France

^c CNRS/UNIV PAU & PAYS ADOUR/E2S UPPA, Institut des sciences analytiques et de physicochimie pour l'environnement et les matériaux, UMR5254, 64000, Pau, France.

^d LPCNO, Université de Toulouse, INSA-CNRS-UPS, 135 Avenue de Rangueil, 31077 Toulouse, France

rosa.axet@lcc-toulouse.fr

Figure S1. TEM images and size distribution histograms of Rh-C₆₀ 1/1, 5/1, 10/1 and 20/1 (scale bar 200 nm).

Figure S2. TEM images and size distribution histograms of Rh-C₆₀ 10/1 synthesized in dichlorobenzene at -20°C (scale bar from left to right: 2 min, 200 and 50 nm; 5 min, 200 and 50 nm; 15 min, 200 and 50 nm; and overnight, 200 and 50 nm).

Time	NP	Nanospheres			
	mean size (nm) ^a	mean size (nm) ^a			
2 min	-	218.7 ± 23.9			
5 min	-	274.4 ± 33.1			
15 min	1.7 ± 0.5 NP on the nanospheres surface 3.4 ± 1.3 NP dispersed on the TEM grid	310.0 ± 32.1			
overnight	2.4 ± 0.7 (83%)/ 4.7 ± 0.4 (17%) ^b	255.7 ± 39.5			

Table S1. Mean size distributions of Rh-C₆₀ nanocatalysts synthesised at -20°C.

^a Manual measurement from enlarged TEM micrographs. ^b In brackets percentage of each population

Figure S3. Related PDF for $Rh-C_{60}$ compounds.

Figure S4. XPS analyses and peak fitting of Rh-C₆₀ compounds, top 1/1, bottom 1/10.

Core	Component	Rh@C ₆₀ 1/1			Rh@C ₆₀ 10/1		
peak		BE (eV)	FWHM (eV)	At %	BE (eV)	FWHM (eV)	At %
Rh 3d	Rh metal	307.8-312.4	1.6-1.8	1.5	307.2-311.9	1.1-1.4	8.0
	C ₆₀	284.3	1.1	68.7	284.3	1.2	52.5
	С-С, С-Н	285.0	1.8	16.1	285.0	1.7	21.2
C 1s	Oxygenated	286.3	1.6	3.6	286.2	1.7	6.0
	Carbon	288.4	1.6	2.2	288.4	1.7	2.8
	Shake-up	290.2	2.2	3.4	290.0	2.0	1.2
O 1s	O bound to C	532.7	2.7	4.5	532.6	2.5	8.3

Table S2. XPS data (peak fitting, FWHM and atomic concentration) for Rh-C₆₀ samples.

Figure S5. ATR-IR spectra of a) Rh-C₆₀ and b) Rh-C₆₀ after thermal treatment.

Figure S7. Thermogravimetric analyses of a) $Rh-C_{60}$ and b) $Rh-C_{60}$ after thermal treatment.

Figure S8. TEM images of $Rh-C_{60}$ 5/1 after thermal treatment under argon at 200°C (scale bar top: 200 nm; bottom 50 nm).

Figure S9. Time-concentration curve for quinoline hydrogenation using $Rh-C_{60}$ 10/1 in toluene.

Figure S10. Time-concentration curve for quinoline hydrogenation using $Rh-C_{60}$ 10/1 in isopropanol.

Figure S11. Time-concentration curve for quinoline hydrogenation using $Rh-C_{60}$ series in isopropanol at 100°C under 20 bar of H_2 .

Figure S12. Chromatograms of quinoline hydrogenation using Rh-C₆₀ 5/1 TT in isopropanol at 80°C under 20 bar of H_2 .

Figure S13. TEM images and size distribution histograms of Rh-C₆₀ nanostructures after catalysis (scale bar from left to right: 200 nm and 50 nm).

Catalyst	т (°С)	P (MPa)	t (h)	Select. (%)	TOF (h ⁻¹)
Rh-C ₆₀	100	2	0.25	>99	488.0
Rh/[bmim]Cl-ZnCl ₂ -[bmim][BF ₄] ¹	80	3	15	90	6.3
NHC-stabilized Rh ²	30	3	2.5	75	238
PEG_{4000} -stabilized Rh ³	100	3	3	>99	762
Au/HAS-TiO2 ⁴	60	2	3.5	100	28.6
Ru-SiO2-mSiO2⁵	90	2	5	100	29.9
Ru/[BMMIM][NTf ₂] ⁶	80	1	5	90	9
Pd-polymer ⁷	80	1	9	98	21.7
Pt/SiO2-RF ⁸	RT	1	1.5	>99	16
BWT-stabilized Pd ⁹	80	2	0.5	96	192

Table S3. Comparison of the TOFs values and selectivities in quinoline hydrogenation
of several representative heterogeneous catalysts with Rh-C $_{60}$.

REFERENCES

(1) Karakulina, A.; Gopakumar, A.; Akçok, İ.; Roulier, B. L.; LaGrange, T.; Katsyuba, S. A.; Das, S.; Dyson, P. J.: A rhodium nanoparticle–lewis acidic ionic liquid catalyst for the chemoselective reduction of heteroarenes. *Angew. Chem., Int. Ed.* **2016**, *128*, 300-304.

(2) Martinez-Espinar, F.; Blondeau, P.; Nolis, P.; Chaudret, B.; Claver, C.; Castillón, S.; Godard, C.: NHC-stabilised Rh nanoparticles: Surface study and application in the catalytic hydrogenation of aromatic substrates. *J. Catal.* **2017**, *354*, 113-127.

(3) Niu, M.; Wang, Y.; Chen, P.; Du, D.; Jiang, J.; Jin, Z.: Highly efficient and recyclable rhodium nanoparticle catalysts for hydrogenation of quinoline and its derivatives. *Catal. Sci. Technol.* **2015**, *5*, 4746-4749.

(4) Ren, D.; He, L.; Yu, L.; Ding, R.-S.; Liu, Y.-M.; Cao, Y.; He, H.-Y.; Fan, K.-N.: An unusual chemoselective hydrogenation of quinoline compounds using supported gold catalysts. *J. Am. Chem. Soc.* **2012**, *134*, 17592-17598.

(5) Zhang, L.; Wang, X.; Xue, Y.; Zeng, X.; Chen, H.; Li, R.; Wang, S.: Cooperation between the surface hydroxyl groups of Ru–SiO₂@ mSiO₂ and water for good catalytic performance for hydrogenation of quinoline. *Catal. Sci. Technol.* **2014**, *4*, 1939-1948.

(6) Konnerth, H.; Prechtl, M. H. G.: Selective hydrogenation of N-heterocyclic compounds using Ru nanocatalysts in ionic liquids. *Green Chem.* **2017**, *19*, 2762-2767.

(7) Dell'Anna, M. M.; Capodiferro, V. F.; Mali, M.; Manno, D.; Cotugno, P.; Monopoli, A.; Mastrorilli, P.: Highly selective hydrogenation of quinolines promoted by recyclable polymer supported palladium nanoparticles under mild conditions in aqueous medium. *Appl. Catal., A.* **2014**, *481*, 89-95.

(8) Bai, L.; Wang, X.; Chen, Q.; Ye, Y.; Zheng, H.; Guo, J.; Yin, Y.; Gao, C.: Explaining the size dependence in platinum-nanoparticle-catalyzed hydrogenation reactions. *Angew. Chem., Int. Ed.* **2016**, *55*, 15656-15661.

(9) Mao, H.; Ma, J.; Liao, Y.; Zhao, S.; Liao, X.: Using plant tannin as natural amphiphilic stabilizer to construct an aqueous-organic biphasic system for highly active and selective hydrogenation of quinoline. *Catal. Sci. Technol.* **2013**, *3*, 1612-1617.