Supplementary information (SI)

Regeneration of water-deactivated Cu/SAPO-34(MO) with acids

Jungwon Woo^a*, Diana Bernin^a, Homayoun Ahari^b, Mark Shost^b, Michael Zammit^b and Louise Olsson ^a*

^aChemical Engineering, Competence Centre for Catalysis, Chalmers University of Technology, 412 96

Gothenburg, Sweden

^b FCA US LLC, 800 Chrysler Drive, Auburn Hills, MI 48326-2766, USA

*jungwon@chalmers.se; <u>*louise.olsson@chalmers.se</u>

Supplementary figures

Figure S1. NH₃-SCR reaction activity according to the deactivation protocol (see Table S1).

Figure S2. NOx conversion of Cu/SAPO-34(MO) treated with silicic acid.

Figure S3. XRD patterns of sample 1, 2, 3, 4, 5, 6, 7, and 8 see Table 1 for details. Sample 1: *Cu/SAPO-34, sample 2: D-Cu/SAPO-34, sample 3: D-Cu/SAPO-34-R-A2-2, sample 4: D-Cu/SAPO-34-R-Heat, sample 5: D-Cu/SAPO-34-R-S2-2, sample 6: D-Cu/SAPO-34-R-A1-1, sample 7: D-Cu/SAPO-34-R-A0.5-1, sample 8: D-Cu/SAPO-34-R-A2-2-C.

Figure S4. H₂-TPR profiles of all samples, see Table 1 for details. Sample 1: Cu/SAPO-34, Sample 2: D-Cu/SAPO-34, Sample 3: D-Cu/SAPO-34-R-A2-2, Sample 4: D-Cu/SAPO-34-R-Heat, Sample 5: D-Cu/SAPO-34-R-S2-2, Sample 6: D-Cu/SAPO-34-R-A1-1, Sample 7: D-Cu/SAPO-34-R-A0.5-1, and Sample 8: D-Cu/SAPO-34-R-A2-2-C. Note the difference between Sample 3, which has been exposed to multiple SCR experiments after regeneration and Sample 8, which is directly after regeneration and used for characterization (C) only.

Supplementary tables

Series of experimental plans	Pre-treatment	Temperature protocol (°C)	
Fresh	8% O ₂ , 400 ppm NH ₃ , 400 ppm NO, 5% H ₂ O at 750°C for 30 min	150, 200, 250, 300, 400, 500	
Deactivation 1 (D-1)	8% O ₂ , 7.5% H ₂ O at 70°C for 5 hr	150, 200, 250	
Deactivation 2 (D-2)	$8\%~O_2,7.5\%~H_2O$ at $70^\circ C$ for 5 hr	150, 200, 250	
Deactivation 3 (D-3)	$8\%~O_2,7.5\%~H_2O$ at $70^\circ C$ for 5 hr	150, 200, 250	

Table S1. Deactivation protocol: pre-treatment conditions and reaction temperatures for NH₃-SCR.

Table S2. BET micropore surface area and micropore volume.

Catalyst	$S_{BET}\left(m^2\!/g\right)$	Micropore volume $(cm^3/g)^*$
Sample 1	519	0.17
Sample 2	484	0.21
Sample 3	398	0.23
Sample 4	469	0.21
Sample 5	473	0.15
Sample 6	484	0.18
Sample 7	499	0.20
Sample 8	367	0.17

*Volume of liquid nitrogen condensed at the low $P/P0 \approx 0.01$

Table S3. Chemical composition of all samples determined by ICP-SFMS. Note that the analysis is made on crushed monoliths, which also contain Si and Al and therefore are Si and Al not shown.

Element	Sample 1	Sample 2	Sample 3	Sample 4	Sample 5	Sample 6	Sample 7	Sample 8
P (wt.%)	0.93	1.08	1.06	1.31	1.29	1.15	1.44	0.84
Cu (wt.%)	0.15	0.18	0.18	0.20	0.21	0.18	0.21	0.15

Table S4. Distribution (%) of Al coordination obtained from deconvoluted ²⁷Al DP MAS NMR spectra

	Al(IV)	Al(V)	Al(VI)
Sample 1	52.9	12.4	34.5
Sample 2	60.0	13.9	25.9
Sample 3	60.6	13.7	25.5
Sample 4	61.2	13.3	25.3
Sample 5	59.5	13.9	26.4
Sample 6	62.6	13.6	23.7
Sample 7	63.4	13.9	22.6
Sample 8	60.8	14.3	24.7