Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2019

Supporting Information

Construction of 2D/2D Ni_2P/CdS heterojunctions with significantly enhanced

photocatalytic H₂ evolution performance

Chun Liu, Minghui Xiong, Bo Chai,* Juntao Yan, Guozhi Fan, Guangsen Song*

School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China.

*Corresponding author E-mail: <u>willycb@163.com</u> (B. Chai) <u>gssong2018@163.com</u> (G. Song)

Fig. S1. Photographs of CdS dispersion obtained at different centrifugal speeds and the corresponding Tyndall effect (a); XRD pattern of bulk and exfoliated CdS (b).

Fig. S2. UV-vis absorption spectra of exfoliated CdS dispersion, L-cysteine hydrochloride aqueous solution, $NH_3 \cdot H_2O$ solution and DETA aqueous solution (a); UV-vis absorption spectra of exfoliated CdS dispersion with the different concentrations (b); Photographs (c) and UV-vis absorption spectra (d) of initial and stored for 3 months CdS dispersion.

Fig. S3. EDS spectrum of 4wt% Ni₂P/CdS heterojunction.

Fig. S4. The Raman spectra of Ni₂P, CdS and 4wt% Ni₂P/CdS heterojunction.

Fig. S5. The H_2 evolution rate of 4wt% Ni₂P/CdS heterojunction and 2wt% Pt/CdS hybrid.

Fig. S6. the XRD pattern of before and after reaction of 4wt% Ni₂P/CdS heterojunction.

Fig. S7. The Mott-Schottky curves of exfoliated CdS (a) and XPS valence band spectrum of Ni_2P (b).

Photocatalyst	Light source	Sacrificial reagent	$\mathrm{H}_{2}(\mathrm{mmol}\;\mathrm{g}^{\text{-}1}\;\mathrm{h}^{\text{-}1})$	Reference
CoP/Zn _{0.5} Cd _{0.5} S	λ≥420 nm	Lactic acid	14.68	[31]
Ni ₂ P/Cd _{0.5} Zn _{0.5} S	λ≥420 nm	Na ₂ S/Na ₂ SO ₃	1.05	[45]
Ni ₂ P /CdS	λ≥420 nm	Lactic acid	2.07	[46]
Ni ₂ P/Cd _{0.5} Zn _{0.5} S	λ≥400 nm	Na ₂ S-Na ₂ SO ₃	9.12	[47]
CoP/CdS	λ≥420 nm	Na ₂ S-Na ₂ SO ₃	13.8	[48]
CoP/Zn _{0.5} Cd _{0.5} S	AM 1.5G filter	Ascorbic acid	12.18	[49]
$MoS_2/ZnIn_2S_4$	λ≥400 nm	TEOA	0.89	[50]
WS ₂ /CdS	λ≥420 nm	Lactic acid	14.1	[51]
MoS ₂ /CdS	λ≥420 nm	Na ₂ S/Na ₂ SO ₃	4.65	[52]
MoSe/ZnIn ₂ S ₄	λ≥420 nm	Lactic acid	6.45	[53]
$MoS_2/ZnIn_2S_4$	λ≥420 nm	Lactic acid	6.88	[54]
Ni ₂ P/CdS	λ≥420 nm	Lactic acid	17.95	This Work

Table S1. Comparing the photocatalytic H_2 evolution activity with other reported photocatalysts.