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1. DFT surface model
To ensure the (3×3) cell is sufficiently large, we conducted the same trimer-adsorbed  𝐸𝑎𝑑𝑠, 𝑂 ∗

calculations on (4×4) supercell models and compared with (3×3) supercell models. For this 
comparison, we randomly selected Al, Sc, Mn, Ga, Sr, Nb, Cd, Sb and Au as the dilute, which 
gave good coverage over all 38 elements considered in this study. The results from (3×3) and 
(4×4) supercells were essentially the same (Figure S1), with a fitted slope of 1.02 and a R2 of 
0.998. As this comparison was done on metal trimers, the largest cluster size, the results 
indicate that for all cluster sizes, the (3×3) supercells are likely large enough for the purpose of 
this study.

Figure S1. Parity plot of  performed using (3×3) and (4×4) supercells.𝐸 𝑡𝑟𝑖𝑚𝑒𝑟
𝑎𝑑𝑠, 𝑂 ∗

2. Verification of methods for calculating aggregation energies
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The method for calculating aggregation energies (eqs. 1-4 in the main text) is an indirect 
method, based on DFT-calculated total energies from separate cells. Although this method was 
used previously and verified carefully 1–3, we verified it again using a more direct method, using 
one single unit cell for DFT calculations (Figure S2).
Using the direct method, the aggregation energy is calculated as

𝐸𝑚𝑜𝑛𝑜𝑚𝑒𝑟→𝑑𝑖𝑚𝑒𝑟
𝑎𝑔𝑔𝑟 = 𝐸(𝐶𝑢 ‒ 𝑀 ‒ 𝑀) + 𝐸(𝐶𝑢 ‒ 𝐶𝑢 ‒ 𝑀, 𝑀) (𝑒𝑞.𝑆1)

Figure S2. Method for calculating the aggregation energy using the direct method, for verifying 
the indirect method used in the main text.

Comparing the direct method with the indirect method used in the main text (Figure S3), we 
find that the two yield generally the same results, thus having limited effect on our ML models. 
Also, since the direct method involves 2/9 = 0.22 coverage of M and the indirect method is 1/9 = 
0.11 coverage of M (in the case of monomer), this also implies that the aggregation energy (at 
least for the monomer-to-dimer case) is invariant of the M coverage. In addition, this also 
verified that the (3×3) supercell is sufficiently large as two monomers within one (3×3) supercell 
has the same aggregation energy as two monomers from two separate supercells.

Eaggr, direct method



Figure S3. Parity plot for monomer-to-dimer aggregation energies calculated using the direct 
and indirect methods.

3. Details of implementation of ML algorithms and cross validation
All ML methods were implemented with MATLAB. ML training and prediction were based on 
built-in functions from the MATLAB machine learning package. For the pre-evaluation of ML 
methods, we employed the automatic Bayesian optimization algorithm to optimize important 
hyperparameters. The optimized hyperparameters are summarized in Table S1. Other 
parameters not explicitly listed are less important and are set to default values in MATLAB. We 
note that in the GPR algorithm, we set the lower bound of sigma to 0.1 eV, which signifies the 
uncertainty of the data points inherent with DFT. The value of 0.1 eV is a good approximation of 
DFT accuracy.4

For performance evaluation of ML models (Section 3.3 in main text), data were randomly 
shuffled and split into the training set (75% of the total data points) and testing set (the 
remaining 25% data points), and the ML models were only trained on the training set, with no 
knowledge of the testing set. We then predicted for the testing set and reported the prediction 
performance separately to ensure bias-free performance measures. We noted a strong effect of 
training/testing splitting on ML performance (Section 3.4 in main text), and accordingly Monte-
Carlo cross-validation (i.e. repeated random sub-sampling validation) was performed, where 
data was randomly shuffled 200 times (subsequently split into 75% and 25% as training and 
testing data) and the performance metrics were averaged over all trials. Performance metrics 



include the root mean squared error (RMSE) and mean absolute error (MAE). For results 
involving random shuffling, we set the random seed in MATLAB to “default” in order to ensure 
data reproducibility.

Table S1. Optimized hyperparameters of ML models during pre-evaluation

Model Hyperparameter Aggregation energy Adsorption energy
Kernel scale 3.5798 10.082

GKR
Lambda 9.8522e-5 2.6927e-5
Kernel scale 2.8292 2.9536
Box constraint 61.376 205.56SVM
Epsilon 0.0043903 0.077687

GPR Kernel function ardmatern52 ardmatern52

4. Sensitivity analysis 
We followed the perturbation method used in previous ML works,5,6 where we perturbed each 
feature to +25% and normalized the corresponding change in the output:
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where  is the total number of data points,  is the output (aggregation or adsorption energy), 𝑁 𝐸

and  is each feature. A greater response in the output indicates greater sensitivity in the 𝑓𝑖

corresponding feature.

5. Numerical data used for training the ML models
Tables S2 contains the numerical data of DFT results used for training the ML models.

Table S2. Numerical data for ML training

 Inputs Outputs (eV)

 AN G P R 
(Angstrom) EN

Aggr, 
Monomer 
to Dimer

Aggr, 
Dimer 

to 
Trimer

Aggr, 
Monomer 
to Dimer, 
with O*

Aggr, 
Dimer to 
Trimer, 
with O*

Ads, 
Mono-

mer

Ads, 
Dimer

Ads, 
Trimer

Ca 20 2 4 1.94 1.04 0.890322 1.0279 -0.4572 -1.01813 -2.722 -4.069 -5.658
Sc 21 3 4 1.84 1.2 0.745071 1.0417 -0.96803 -1.3134 -3.327 -5.040 -6.427
Ti 22 4 4 1.76 1.32 0.008725 -0.012 -1.18377 -1.90574 -3.661 -4.853 -5.563
V 23 5 4 1.71 1.45 -0.596267 -0.038 -0.83698 -1.82215 -3.51 -3.754 -4.700
Cr 24 6 4 1.66 1.56 0.248274 0.4887 -0.67961 -1.09911 -2.840 -3.768 -4.676

Mn 25 7 4 1.61 1.6 0.18162 0.1645 -0.54207 -0.91804 -2.56 -3.285 -3.825
Fe 26 8 4 1.56 1.64 -0.366682 -0.470 -0.70398 -1.40473 -2.612 -2.949 -3.179
Co 27 9 4 1.52 1.7 -0.247839 -0.275 -0.5957 -1.12336 -2.438 -2.785 -3.037
Ni 28 10 4 1.49 1.75 -0.016374 -0.044 -0.33728 -0.64735 -2.036 -2.357 -2.622
Zn 30 12 4 1.42 1.66 0.046087 0.0921 -0.03724 -0.05351 -1.764 -1.847 -1.956



Ga 31 13 4 1.36 1.82 0.127692 0.1511 0.024294 0.076854 -1.825 -1.928 -2.027
Ge 32 14 4 1.25 2.02 0.16939 0.4547 0.36949 0.895124 -1.551 -1.350 -1.280
Se 34 16 4 1.03 2.48 0.107541 0.2760 0.028435 1.660713 -1.52 -1.60 -0.244
Sr 38 2 5 2.19 0.99 1.160955 1.3298 -0.00345 -0.09949 -2.65 -3.819 -5.245
Y 39 3 5 2.12 1.11 1.12862 1.3427 -0.88138 -0.80559 -3.221 -5.231 -6.498
Zr 40 4 5 2.06 1.22 0.446038 0.5361 -1.16872 -1.17724 -3.560 -5.175 -5.720
Nb 41 5 5 1.98 1.23 -0.784387 -0.456 -1.45195 -2.00064 -3.591 -4.258 -4.350
Mo 42 6 5 1.9 1.3 -2.075003 -0.72 -1.29838 -2.71229 -3.348 -2.572 -3.262
Tc 43 7 5 1.83 1.36 -1.378251 -0.500 -0.78325 -1.65423 -2.971 -2.376 -2.746
Ru 44 8 5 1.78 1.42 -0.235337 -0.05 -0.29401 -0.56482 -2.306 -2.36 -2.582
Rh 45 9 5 1.73 1.45 0.146286 0.4290 0.082216 0.13776 -1.772 -1.836 -2.20
Pd 46 10 5 1.69 1.35 0.059583 0.0843 0.341447 0.738098 -1.409 -1.12 -0.815
Ag 47 11 5 1.65 1.42 0.071526 0.1130 0.786881 1.379013 -1.617 -0.901 -0.422
Cd 48 12 5 1.61 1.46 0.101859 0.1266 0.29078 0.442769 -1.507 -1.318 -1.292
In 49 13 5 1.56 1.49 0.252666 0.5176 0.31151 0.549985 -1.549 -1.490 -1.769
Sn 50 14 5 1.45 1.72 0.526534 0.8709 0.615811 1.357451 -1.363 -1.27 -1.40
Sb 51 15 5 1.33 1.82 0.769528 1.1623 0.839069 1.73174 -1.052 -0.983 -1.253
Te 52 16 5 1.23 2.01 0.675248 1.1670 1.081587 2.234741 -0.936 -0.529 -0.543
Hf 72 4 6 2.08 1.23 0.506781 0.5526 -1.17527 -1.05639 -3.660 -5.342 -5.775
Ta 73 5 6 2 1.33 -0.572173 -0.469 -1.39388 -1.69179 -3.930 -4.752 -4.580
W 74 6 6 1.93 1.4 -1.515764 -1.444 -0.83842 -2.15349 -4.284 -3.606 -3.477
Re 75 7 6 1.88 1.46 -1.440478 -1.213 -0.83435 -1.9157 -3.28 -2.678 -2.546
Os 76 8 6 1.85 1.52 -0.634448 -0.243 -0.26425 -0.54131 -2.521 -2.150 -2.184
Ir 77 9 6 1.8 1.55 0.057534 0.2761 0.129691 0.311899 -1.82 -1.755 -1.848
Pt 78 10 6 1.77 1.44 0.096109 0.1463 0.416613 0.914178 -1.340 -1.020 -0.669
Au 79 11 6 1.74 1.42 0.166998 0.2857 0.756532 1.576949 -1.109 -0.520 0.0143
Tl 81 13 6 1.56 1.44 0.231191 0.307 0.581899 1.113117 -1.441 -1.091 -0.867
Pb 82 14 6 1.54 1.55 0.509197 0.7565 0.630741 1.524619 -1.342 -1.221 -1.083

6. Other figures



Figure S4. RMSE in predicted  , as an increasing number of training points are 
𝐸

𝑎𝑑𝑠, 𝑂 ∗

selected using active learning algorithm (red) and random selection (blue). Solid line 
and shaded area are mean and ± 1σ of RMSE from 50 runs, each with a randomly 
chosen starting training point. Horizontal dotted line indicates average RMSE using 50 
times of leave-25%-out (reported in Table 1) for better comparison. At each indicated 
stage is one ML model predicting for Period 4 elements. (× and ∙ are training and testing 
set data respectively)



Figure S5. ML prediction on (a) and  (b) where the 𝐸𝑎𝑑𝑠,  𝑂 ∗  𝐸𝑚𝑜𝑛𝑜𝑚𝑒𝑟 𝑡𝑜 𝑑𝑖𝑚𝑒𝑟
𝑎𝑔𝑔𝑟

dilute secondary metal is Ni and substrates are varied, after the model is 
trained on 1/2 of the corresponding data set. Shaded areas represent 95% 
confidence interval. Parity plots of the same prediction are shown to the right, 
with MAE’s on training (blue) and testing (red) data respectively.


