Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2019

Electronic Supplementary Information

Tailorable Synthesis of Heterogeneous Enzyme-Copper

Nanobiohybrids and application in selective oxidation of

benzene to phenol

Noelia Losada-Garcia^a, Alba Rodriguez-Otero^a and Jose M. Palomo^{a*}

^aDepartment of Biocatalysis. Institute of Catalysis (CSIC). Marie Curie 2.

Cantoblanco. Campus UAM, 28049 Madrid, Spain. Fax: +34-91-585-4760.

E-mail: josempalomo@icp.csic.es

LPSGSDPAFSQPKSVLDAGLTCQGASPSSVSKPILLVPGTGTTGPQSF DSNWIPLSTQLGYTPCWISPPPFMLNDTQVNTEYMVNAITALYAGS GNNKLPVLTWSQGGLVAQWGLTFFPSIRSKVDRLMAFAPDYKGTV LAGPLDALAVSAPSVWQQTTGSALTTALRNAGGLTQIVPTTNLYSA TDEIVQPQVSNSPLDSSYLFNGKNVQAQAVCGPLFVIDHAGSLTSQF SYVVGRSALRSTTGQARSADYGITDCNPLPANDLTPEQKVAAAALL APAAAAIVAGPKQNCEPDLMPYARPFAVGKRTCSGIVTP

Figure S1. Sequence of amino acids of the lipase from Candida antarctica B (CALB).

Figure S2. 3D-structure of CALB. Asp,Glu (red), Lys(blue), His (Green), potential metal-binding area (yellow). The 3D structure was obtained from the Protein Data Bank (PDB) using Pymol vs 0.99. The pdb code for CAL-B is TCA.

Figure S3. Characterization of the **Cu-CALB-BIC** nanobiohybrid drying at 100°C. A) XRD spectrum, B) TEM images.

Figure S4. XRD pattern of Cu-CALB nanobiohybrid synthesized in water.

Figure S5. Characterization of the **Cu-CALB-PHOS-NRH**₂**O**₂ nanobiohybrid. A) XRD spectrum, B) TEM images, C) HTEM images.

Figure S6. Characterization of the **Cu-CALB-PHOS-NRNaOH** nanobiohybrid. A) XRD spectrum, B) TEM images, C) HTEM images.

Figure S7. Characterization of the Cu-CALB-PHOS-10 nanobiohybrid, A) XRD, B) SEM.

Figure S8. Characterization of the **Cu-CALB-PHOS-NR-10** nanobiohybrid, A) XRD, B) SEM.

Figure S9. Comparative between XRD of Cu-CALB-PHOS-NR nanobiohybrid after heat treatment in water (red) and in SDS-Mercapto (blue) and XRD original of Cu-CALB-PHOS-NR nanobiohybrid (pink).

Figure S10. Phenol calibration curve.

Cu- nanobiohybrid	Amount of Cu by ICP-OES (%) ^a
Cu-CALB-PHOS	81
Cu-CALB-BIC	84
Cu-CALB-PHOS-2	60
Cu-CALB-BIC-2	93
Cu-CALB-PHOS-NR	32
Cu-CALB-PHOS-NRNaOH	35
Cu-CALB-PHOS-NRH ₂ O ₂	22
Cu-CALB-PHOS10%R	48
Cu-CALB-PHOS10	50
Cu-CALB-PHOS-NR10	50

Table S1. Content of Cu in the different nanobiohybrid determined by ICP-OES.

^aThe measurement was performed of the solid material. 10 mg of the solid powder was treated with 5 mL of HCl (37% v/v) for digestion. Then, it was added with 5 mL of water, centrifuged and the clear solution analyzed by Cu content.

[C ₆ H ₆] _{inicial} (mM)	Solubility ^b C ₆ H ₆ in water a r.t
50	20
100	62
200	71

Table S2. Solubility of benzene at different concentrations ^a.

^a 33% H_2O_2 (1.25 mmol), catalyst (5 mg), 10 mL solution (99%water, 1%ACN), 30°C, 24 h. ^bBenzene solubility was calculated by HPLC quantification using standard concentrations in pure acetonitrile.

[C ₆ H ₆] inicial	Co-Solvent ^b	Solubility ^c C ₆ H ₆ in
(mM)	(%)	water a r.t
100	1	62
100	10	68
100	20	72
100	50	85
100	100	100

Table S3. Solubility of benzene at different amount of co-solvent.

^aBenzene (1 mmol), 33% H_2O_2 (1.25 mmol), catalyst (5 mg), 10 mL aqueous medium, 30°C, 24 h. ^bAmount of acetonitrile as co-solvent in water (v/v). ^c Benzene solubility was calculated by HPLC using standard concentrations in pure acetonitrile.