Supporting Information

Amorphous $CoFe(OH)_x$ hollow hierarchical structure: an efficient and durable electrocatalyst for oxygen evolution reaction

Xiaoyang Yue,^a Wentao Ke,^a Minghua Xie,^b Xiaoping Shen,^{a,*} Zhenyu Yan,^a

Zhenyuan Ji,^a Guoxing Zhu,^a Keqiang Xu,^a Hu Zhou ^c

^a School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China

^b Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province, Yancheng Institute of Technology, Yancheng 224051, P. R. China ^c School of Material Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, P. R. China

*Corresponding author: Tel.: +86 511 88791800; Fax: +86 511 88791800 *E-mail address: <u>xiaopingshen@163.com</u> (X.P. Shen)*

Fig. S1. The SEM images of (a, b) Co(OH)₂, (c, d) CoFe(OH)_x-1 and (e, f)

 $CoFe(OH)_x$ -3.

Fig. S2. The SEM images of $CoFe(OH)_x$ and its elemental mapping images of Co, Fe

and O.

Fig. S4. XPS survey spectra of the as-prepared $CoFe(OH)_x$ -2 and $Co(OH)_2$.

Fig. S5. LSV curves of $Co(OH)_2$ and *p*-Co(OH)₂.

Fig. S6. CV curves of (a) $Co(OH)_2$, (b) $CoFe(OH)_x$ -1, and (c) $CoFe(OH)_x$ -3 at

different scan rates.

Table S1. The elemental contents of as-prepared samples measured by ICP and

	Elemental contents						
Sample	Со	Fe	Cu	S	Co:Fe		
	(wt%)	(wt%)	(wt%)	(wt%)	(molar		
					ratio)		
<i>p</i> -Co(OH) ₂	58.10	-	-	-			
Co(OH) ₂	49.88	-	3.23	5.17			
$CoFe(OH)_x$ -1	47.26	2.69	3.18	5.21	16.65:1		
$CoFe(OH)_x$ -2	45.12	4.89	3.08	5.33	8.74:1		
$CoFe(OH)_x$ -3	39.96	9.97	3.11	4.98	3.80:1		

elemental analysis.

Electrocatalysts	Eletrode	$\eta_{10} (\mathrm{mV})$	Tafel slope	Ref. Year	Published Journal
		(eletrolyte)	$(mV dec^{-1})$		
Ni _{0.71} Fe _{0.29} (OH) _x	Graphite	296 (1M KOH)	58	[22] ²⁰¹⁶	Nanoscale
	electrode				
NiFeCr LDH	GC	280	~130	[18] ²⁰¹⁸	Adv. Energy Mater.
NiCo(OH) _x	Stainless	~255 (1M KOH)	24	$[20]^{2017}$	ACS Appl. Mater.
	steel foil				Interfaces
CoFe hydroxide	Ni foam	220 (1M KOH)	40	[16] ²⁰¹⁸	Small
CoFe-Bi@CoFe-LDH	Ti mesh	418	131	[S1] ²⁰¹⁸	ACS Sustain. Chem.
		(Neutral			Eng.
		electrolyte)			
CoFePi/Ni(PO ₃) ₂	Carbon	213 (1M KOH)	39	[24] 2018	J. Mater. Chem. A
	cloth				
FeCo-P/C	Glassy	360 (1M KOH)	58.4	[S2] ²⁰¹⁸	Small
	carbon				
CoFe ₂ O ₄	Carbon	378 (1M KOH)	73	[S3] ²⁰¹⁷	ACS Appl. Mater.
2 .	fiber				Interfaces
	papers				
CoFe LDH-F	Glassy	300 (1M KOH)	40	[S4] ²⁰¹⁶	ACS Appl. Mater.
	carbon				Interfaces
S-NiCoFe LDH	Carbon	206 (1M KOH)	46	[15] 2018	J. Mater. Chem. A
	cloth				
Cu@CoFe LDH	Cu foam	240 (1M KOH)	44.4	[S5] ²⁰¹⁷	Nano Energy
CoFe(OH) _x -2	Glassy	293 (1M KOH)	67.4	\	This work
~ /*	carbon	、 ,			

Table S2. A comparison of the OER performances of the as-prepared $CoFe(OH)_x$ -2 with the state-of-the-art Co, Fe, Ni-based OER electrocatalysts reported previously.

Reference

[S1] C. You, Y. Ji, Z. Liu, X. Xiong, X. Sun, ACS Sustain. Chem. Eng. 2018, 6, 1527.

[S2] W. Hong, M. Kitta, Q. Xu, Small Methods 2018, 2, 1800214.

[S3] A. Kargar, S. Yavuz, T.K. Kim, C.-H. Liu, C. Kuru, C.S. Rustomji, S. Jin, P.R. Bandaru, ACS Appl. Mater. Interfaces 2015, 7, 1.

[S4] P.F. Liu, S. Yang, B. Zhang, H.G. Yang, ACS Appl. Mater. Interfaces 2016, 8, 34474.

[S5] L. Yu, H. Zhou, J. Sun, F. Qin, D. Luo, L. Xie, F. Yu, J. Bao, Y. Li, Y. Yu, S. Chen, Z. Ren, Nano Energy 2017, **41**, 327.