Different Phases of Few-layer MoS₂ and their Silver/Gold

Nanocomposites for Efficient Hydrogen Evolution Reaction

Jing Wang, Wenhui Fang, Ye Hu, Yuhua Zhang, Jiaqi Dang, Ying Wu, Hong Zhao*, Zengxi Li*

School of Chemical Sciences, University of Chinese Academy of Sciences, 19A YuQuan Road, Beijing

100049, China

^{*} Corresponding author: Tel.: +86-10-88256093. E-mail address: hongzhao@ucas.ac.cn (H. Zhao);

lizengxi@ucas.ac.cn (Z. Li).

Temperature (°C)	the percentage of 1T phase	the percentage of 2H phase
160	72.1%	27.9%
170	75.6%	24.4%
180	80.1%	19.9%
190	68.0%	32.0%
200	57.6%	42.4%
210	16.3%	83.7%
220	15.6%	84.4%

Table 1. Summary of phase content for products obtained at 160, 180, 170, 190, 200,

210 and 220°C.

Fig. S1. High-resolution XPS Mo 3d spectra of the products obtained at (a) 160°C, (b) 170°C, (c) 190°C, (d) 210°C and (e) 220°C, and (f) the 1T and 2H phase content for products obtained at different temperature.

Fig. S2. Contact angle of water droplets on the surface of (a) 1T-MoS $_{2,}$ (b) 1T/2H-

 MoS_2 and (c) 2H-MoS_2, respectively.

Fig. S3. SEM and TEM images of (a, b) 1T-MoS₂, (c, d) 1T/2H-MoS₂, and (e, f) 2H-MoS₂, respectively.

Fig. S4. UV-vis spectra of $1T-MoS_2$, the mixture of $1T-MoS_2$ and $AgNO_3$ (inset: photo images of the color $1T-MoS_2$ (0.075 mg mL⁻¹), the mixture of $1T-MoS_2$ (0.075 mg mL⁻¹) and $AgNO_3$ (0.1 mM)).

Fig. S5. The EDX elemental mapping images for 1T-MoS₂@Ag/AuNPs (a) Mo, (b) S,

(c) Au, (d) Ag and (e) the EDX spectrum of $1T-MoS_2@Ag/AuNPs$.

Fig. S6. Nitrogen adsorption-desorption isotherms at 77K and the BJH pore-size distributions (insets) of (a) 1T-MoS₂, (b) 1T-MoS₂@AgNPs, (c) 1T-MoS₂@AuNPs and (d) 1T-MoS₂@Ag/AuNPs nanosheets.

Fig. S7. XRD spectra of 1T-MoS₂@Ag/AuNPs obtained by three different methods.

Fig. S8. Cyclic voltammetry curves of the six representative MoS_2 nanosheet samples in 0.5 M H₂SO₄ under different scan rates (20-200 mV s⁻¹) were measured in the region of 0 to 0.3 V vs. RHE.