Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2019

Supporting information

Engineering heterometallic bonding in bimetallic electrocatalysts: towards optimized hydrogen oxidation and evolution reactions

Chiu-Ping Huang,^{1,2} Meng-Che Tsai,^{*,1} Xiao-Ming Wang,¹ Hao-Sheng Cheng,¹ Yu-Hsiang Mao,¹ Chun-Jern Pan,¹ Jiunn-Nan Lin,² Li-Duan Tsai,² Wei-Nien Su,^{*,3} and Bing-Joe Hwang^{*,1,4}

¹ Nano Electrochemistry Laboratory, Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan.

² Material and Chemical Research Laboratories, Industrial Technology Research Institute, Hsinchu 31040, Taiwan

³ Graduate Institute of Applied Science and Technology, National Taiwan

University of Science and Technology, Taipei 106, Taiwan

⁴ National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan

*E-mail: snowild0326@gmail.com, wsu@mail.ntust.edu.tw, bjh@mail.ntust.edu.tw

Contents

Figure S1. (a) Extended HCP-Ru₃-M₁ bulk model and (b) Ru_3 -M₁ (0001) surface model, where Ru and M atoms are indicated.

Figure S2. STEM images of (a) Ru/C and (b) $Ru_{2.3}Ni_1/C$ and the distribution of the particle size.

Figure S3. STEM-EDS elemental maps of the Ru_{2.3}Ni₁/C catalyst. (a) HAADF-STEM image, (b) overlap of C, Ru and Ni elemental map signals, (c) C elemental map signals, (d) Ru elemental map signals, and (e) Ni elemental map signals.

Figure S4. (a) STEM image and (b) EDS analysis of synthesized RuNi NPs.

Figure S5. Cyclic voltammetric curve of Pt/C, Ru/C, Ni/C and Ru_{2.3}Ni₁/C in Ar-saturated 0.1 M KOH at 50 mV s⁻¹.

Figure S6. Tafel plots of Pt/C, Ru/C and $Ru_{2.3}Ni_1/C$ in alkaline (a) HOR and (b) HER.

Figure S7. Rotating-disk voltammograms of (a) Pt/C, (b) Ru/C and (c) $Ru_{2.3}Ni_1/C$ in H_2 -saturated 0.1 M KOH at 10 mV s⁻¹. (d) Koutechy-Levich plots of the different catalysts.

Figure S8. CO stripping voltammograms of (a) Pt/C, (b) Ru/C, (c) Ni/C and (d) $Ru_{2.3}Ni_1/C$ in CO-saturated 0.1 M KOH at 10 mV s⁻¹.

Figure S9. XRD patterns of Ru_{2.3}Ni₁/C, Ru₁Ni_{1.2}/C and Ru₁Ni_{2.4}/C nanocatalysts.

Figure S10. *k*-space and r-space of (a, c) Ru K-edge and (b, d) Ni K-edge for the Ru_{2.3}Ni₁/C catalyst.

Table S1. Tafel slope and exchange current densities of Pt/C, Ru/C and $Ru_{2.3}Ni_1/C$ in alkaline HOR and HER.

Table S2. Electrochemical surface area (ECSA) and the specific activities (j_k) of Pt/C, Ru/C and Ru_{2.3}Ni₁/C.

Table S3. Catalyst loading, specific activity and mass activity for alkaline HOR and HER on the Rubased catalysts.

Table S4. Specific activity of the RuNi nanocatalysts with the different Ru/Ni ratios in HOR and HER.**Table S5.** EXAFS fitting results of Ru_{2.3}Ni₁/C.

Figure S1. (a) Extended HCP-Ru₃-M₁ bulk model and (b) Ru_3 -M₁ (0001) surface model, where Ru and M atoms are indicated.

Figure S2. STEM images of: (a) Ru/C and (b) $Ru_{2.3}Ni_1/C$ and the corresponding particle size distribution.

Figure S3. STEM-EDS elemental maps of the $Ru_{2.3}Ni_1/C$ catalyst. (a) HAADF-STEM image, (b) overlap of C, Ru and Ni elemental map signals, (c) C elemental map signals, (d) Ru elemental map signals, and (e) Ni elemental map signals.

Figure S4 (a) STEM image and (b) EDS analysis of synthesized RuNi NPs.

Figure S5 Cyclic voltammetric curve of Pt/C, Ru/C, Ni/C and $Ru_{2.3}Ni_1/C$ in Ar-saturated 0.1 M KOH at 50 mV s⁻¹.

Figure S6. Tafel plots of Pt/C, Ru/C and Ru_{2.3}Ni₁/C in alkaline (a) HOR and (b) HER.

Figure S7. Rotating-disk voltammograms of: (a) Pt/C, (b) Ru/C and (c) $Ru_{2.3}Ni_1/C$ in H_2 -saturated 0.1 M KOH at 10 mV s⁻¹. (d) Koutechy-Levich plots of the different catalysts.

Table S1. Tafel slope and exchange current density of Pt/C, Ru/C and Ru_{2.3}Ni₁/C in alkaline HOR and HER.

Catalysts	Tafel slope	Exchange current	
	HOR	HER	density (mA/ cm ² _{Metal})
Pt/C	120	78	0.046
Ru/C	111	76	0.019
Ru _{2.3} Ni ₁ /C	112	79	0.031

Figure S8. CO stripping voltammograms of: (a) Pt/C, (b) Ru/C, (c) Ni/C and (d) $Ru_{2.3}Ni_1/C$ in CO-saturated 0.1 M KOH at 10 mV s⁻¹.

Table S2. Electrochemical surface area (ECSA) and the specific activities (j_k) of Pt/C, Ru/C and Ru_{2.3}Ni₁/C.

Catalysts	ECSA ^a (m ² /g _{Metal})	j _k @0.05 V _{RHE} (mA/cm² _{Metal})	j@-0.05 V _{RHE} (mA/cm² _{Metal})
Pt/C	53	0.233	-0.182
Ru/C	118	0.054	-0.053
Ru _{2.3} Ni ₁ /C	103	0.100	-0.098

^a Normalized by weight of all metals

Table S3. Catalyst loading, specific activity and mass activity for alkaline HOR and HER on the Rubased catalysts.

Catalysts	Catal. Loading (mg _{metal} cm ⁻²)	i _s (mA cm ⁻² _{metal})	i _m (mA mg⁻¹)	Ref.
	HOR			
Ru/C	0.01	0.047	60	1
Pt/C		0.233	56	Thic
Ru/C	0.04	0.054	45	work
Ru _{2.3} Ni ₁ /C		0.100	82 ^a	WUIK
		HER		
Pt/C	0.041	-0.095	-74	2
Ru/C	0.041	-0.099	-24	2
$Ru/C_3N_4/C$	0.048	-0.172	-78	2
Pt/C		-0.182	-96	Thic
Ru/C	0.04	-0.053	-62	11115 Work
Ru _{2.3} Ni ₁ /C		-0.098	-125ª	WORK

All the catalysts were performed in 0.1 M KOH.

^aThe mass activity is calculated based on precious metal (Ru).

Catalysts	<i>i</i> s@0.05 V _{RHE}		
Caldiysis	(mA cm ⁻² _{metal})		
Н	OR		
Pt/C	0.233		
Ru/C	0.054		
Ru _{2.3} Ni ₁ /C	0.100		
Ru ₁ Ni _{1.2} /C	0.125		
Ru ₁ Ni _{2.4} /C	0.099		
Н	ER		
Pt/C	-0.182		
Ru/C	-0.053		
Ru _{2.3} Ni ₁ /C	-0.098		
Ru ₁ Ni _{1.2} /C	-0.126		
Ru ₁ Ni _{2.4} /C	-0.098		

Table S4. Specific activity of the RuNi nanocatalysts with the different Ru/Ni ratios in HOR and HER.

Figure S9. XRD patterns of Ru_{2.3}Ni₁/C, Ru₁Ni_{1.2}/C and Ru₁Ni_{2.4}/C nanocatalysts.

Figure S10. *k*-space and r-space of (a, c) Ru K-edge and (b, d) Ni K-edge for the Ru_{2.3}Ni₁/C catalyst.

Sample	Shell	Ν	R (Å)	ΔE ₀ (eV)	σ²(Ų)	R-factor (×10 ⁻ ³)
Ru foil	Ru-Ru	12.0±1.20	2.68±0.01	5.59	0.004	0.9
Ni foil	Ni-Ni	12.0±0.60	2.47±0.01	6.12	0.006	0.1
Ru _{2.3} Ni ₁ /C	Ru-Ru	7.02±1.22	2.67±0.01		0.004	
	Ru-Ni	2.51±1.08	2.61±0.09		0.022	
	Ni-Ni	2.06±0.89	2.49±0.05	-4.96	0.004	1.8
	Ni-Ru	5.77±1.08	2.61±0.09		0.032	
	Ni-O	2.17±1.09	2.04±0.21		0.008	

Table S5. EXAFS fitting results of Ru_{2.3}Ni₁/C.

References

(1) Ohyama, J.; Sato, T.; Yamamoto, Y.; Arai, S.; Satsuma, A., Size Specifically High Activity of Ru Nanoparticles for Hydrogen Oxidation Reaction in Alkaline Electrolyte *J. Am. Chem. Soc.* **2013**, *135* (21), 8016-8021.

(2) Zheng, Y.; Jiao, Y.; Zhu, Y.; Li, L. H.; Han, Y.; Chen, Y.; Jaroniec, M.; Qiao, S.-Z., High Electrocatalytic Hydrogen Evolution Activity of an Anomalous Ruthenium Catalyst *J. Am. Chem. Soc.* 2016, *138* (49), 16174-16181.