Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2020

## **Supporting Information**

## **Bifunctionally Active Nanosized Spinel Cobalt Nickel Sulfides for Sustainable Secondary**

## Zinc-Air Batteries: Examining the effects of compositional tuning on OER and ORR activity

Yijie Xu,<sup>a,b</sup> Afriyanti Sumboja,<sup>c,d</sup> Yun Zong,<sup>b,\*</sup> Jawwad A. Darr,<sup>a,\*</sup>

<sup>a</sup> Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, United Kingdom

<sup>b</sup> Institute of Materials Research and Engineering (IMRE), A\*STAR Agency for Science, Technology and Research, 2 Fusionopolis Way, Innovis #08-03, 138634, Singapore

<sup>c</sup> Material Science and Engineering Research Group, Faculty of Mechanical and Aerospace Engineering, Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132, Indonesia

<sup>d</sup> National Centre for Sustainable Transportation Technology (NCSTT), Jl. Ganesha 10 Bandung 40132, Indonesia

Email: j.a.darr@ucl.ac.uk; y-zong@imre.a-star.edu.sg

**Keywords**: Continuous hydrothermal; cobalt nickel sulfide; oxygen evolution reaction; oxygen reduction reaction; Zn-air batteries



Figure S1. Diagram of the (a) laboratory-scale CHFS apparatus and (b) dual CJM mixer setup.

Figure S2. Illustration of the Neware battery tester (Model V5, China).



**Figure S3.** Illustration of the tangential method (green) of determining ORR onset potential for NC11 at 925 mV.



**Figure S4a).** (Top) Fitted equivalent circuits for a) NC11, b) NC13, and c) NC31. (Bottom) Fitted circuit Nyqvist plots (red) against Nyqvist plots of c) NC11, d) NC13, and e) NC31.



## S4b). Determination of Electrochemical Surface Area (ECSA) from Electrochemical Impedance Spectroscopy

It has been argued in literature that the double layer capacitance of a material such as  $NiCo_2S_4$  is linearly proportional to the ECSA.[1] Acharya et. al have previously shown that ECSA can be determined from the Nyqvist plots obtained from EIS results by calculation of the double layer capacitance  $C_{dl}$  given that a parallel circuit consisting of a resistor and a constant phase element are present.[2][3] This is given by the equation:

$$C_{dl} = \frac{(Y_0 * R_p)\frac{1}{n}}{R_p}$$

Where  $C_{dl}$  is the capacitance of the double layer (F),  $Y_0$  is a parameter that relates to the magnitude of capacity (S\*s<sup> $\alpha$ </sup>),  $R_p$  is the polarization resistance connected in parallel with the constant phase element (CPE), and n is a dimensionless exponent that relates to inhomogeneity of the surface, used to calculate CPE.

The calculated  $C_{dl}$  values for NC11, NC13, and NC31 were 8.402 mF, 6.238 mF, and 4.491 mF, respectively, in broad agreement with literature for NiCo<sub>2</sub>S<sub>4</sub>. [1]

**Figure S5**. a) XRD spectrum of the as-made NiS<sub>2</sub> sample. b) Ni 2p spectrum of the as-made NiS<sub>2</sub> sample. The oxidation state ratio of Ni(II):Ni(III) was 15:85. c) S 2p spectrum of the as-made NiS<sub>2</sub> sample.



Table S1. Elemental composition of nickel cobalt sulfides based on XPS, EDS, XRF, and ICP analysis.

|     | Ni/Co/S   |           |           |
|-----|-----------|-----------|-----------|
|     | NC13      | NC11      | NC31      |
| XPS | 1.7/3.1/4 | 1.8/1.8/4 | 4/1.7/4   |
| EDS | 1.3/3.3/4 | 1.8/1.8/4 | 4.5/1.5/4 |
| XRF | 1/2.6/4   | 1.7/1.7/4 | 2.9/1/4   |
| ICP | 0.8/2.2/4 | 1.5/1.5/4 | 2.4/0.8/4 |

Table S2. Relative ratio of cation pairs of nickel cobalt sulfides, based on XPS analysis.

|                | Sample    |           |           |
|----------------|-----------|-----------|-----------|
|                | NC31      | NC11      | NC13      |
| Co(II):Co(III) | 87% : 13% | 85% : 15% | 67% : 33% |
| Ni(II) :       | 5% : 95 % | 23% : 77% | 31% : 69% |

[1] Song, Xue-Zhi, et al. "Hollow core-shell NiCo 2 S 4@ MoS 2 dodecahedrons with enhanced performance for supercapacitors and hydrogen evolution reaction." *New Journal of Chemistry* 43.8 (2019): 3601-3608

[2] Acharya, Prashant, et al. "Role of Surface Area on the Performance of Iron Nickel Nanoparticles for the Oxygen Evolution Reaction (OER)." *ECS Transactions* 85.11 (2018): 81-89.

[3] Jovic, V. D. "Determination of the correct value of Cdl from the impedance results fitted by the commercially available software." *Research solutions & Resources* (2003).