Effects of SO₂ on Cu-SSZ-39 catalyst for the selective catalytic reduction of NO_x with NH_3

Jinpeng Du^{a,b}, Xiaoyan Shi^{a,b}, Yulong Shan^{a,b}, Guangyan Xu^{a,b}, Yu Sun^{a,b}, Yingjie

Wang^{a,b}, Yunbo Yu^{a,b,c}, Wenpo Shan^{c*}, Hong He^{a,b,c}

^a State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences,

Beijing 100085, China.

^b University of Chinese Academy of Sciences, Beijing 100049, China.

^c Center for Excellence in Regional Atmospheric Environment, Institute of Urban

Environment, Chinese Academy of Sciences, Xiamen 361021, China.

Include 9 pages, 7 figure, 3 tables.

Figure S1. TPD profiles of pure $CuSO_4$ and $Al_2(SO_4)_3$. The relative molecular mass of 64 was taken as the signal of SO₂.

Figure S2. The integrated SO_2 desorption amounts from SO_2 -TPD results (The intensity of total SO_2 desorption signal for S-200 was taken as 1, and the intensity of SO_2 signal for other samples was a relative amount to S-200).

Figure S3. The H_2 -TPR profiles of pure $CuSO_4$ and $Al_2(SO_4)_3$.

Figure S4. The integrated H_2 consumption amounts from H_2 -TPR results (The amount of total H_2 consumption S-200 was taken as 1, and the amount of H_2 consumption for other samples was a relative amount to S-200).

Figure S5. The NH₃-TPD profiles of pure CuSO₄ and Al₂(SO₄)₃.

Figure S6. The integrated NH₃ desorption amounts from NH₃-TPD results.

Figure S7. The framework of Cu-SSZ-39 (AEI structure) and Cu-SSZ-13 (CHA structure). The picture was obtained from International Zeolite Association: Structure Commission. Data base of Zeolite Structures, http://www.iza-structure.org/.

are derived from XRD data) S-400 S-400-R S-600 S-600-R Sample fresh S-200 S-200-R Relative 100 91.4 94.4 91.9 98.1 91.0 84.9 crystallinity/%

 Table S1. Relative crystallinity of fresh, sulfated and regenerated catalysts. (the results

Table S2. Surface area and pore volume of fresh, sulfated and regenerated catalysts.

Sample	fresh	S-200	S-200-R	S-400	S-400-R	S-600	S-600-R
Surface area	410	247	202	250	241	244	222
(m^{2}/g)	419	347	383	332	341	344	323
Pore volume	0.22	0.10	0.21	0.10	0.20	0.20	0.20
(cm ³ /g)	0.23	0.19	0.21	0.19	0.20	0.20	0.20

Table S3. Relative Cu²⁺ content of fresh, sulfated and regenerated catalysts. (The results are calculated from the area of double integral of EPR profiles, and the relative

Cu²⁺ content of fresh sample was taken as 100%)

Sample	fresh	S-200	S-400	S-600	S-200-R	S-400-R	S-600-R
Relative Cu ²⁺	100	07.0	95.9	05.0	07.2	01.6	02.2
content/%	100	97.0	05.0	93.9	72.3	91.0	95.5