Electronic Supplementary Information

The Additives and Intermediates on Vanadia-Based Catalyst for Multi-Pollutants Control

Xu Huang,^{ab} Zhan Liu,^c Dong Wang,^a Yue Peng,^{*a} and Junhua Li^a

^a State Key Joint Laboratory of Environment Simulation and Pollution Control, National Engineering Laboratory for Multi Flue Gas Pollution Control Technology and Equipment, School of Environment, Tsinghua University, Beijing 100084, China

^b Research Center for Cleaner Production Engineering and Circular Economy, Chinese Research Academy of Environmental Sciences, Beijing 100012, China

^c State Key Laboratory of High Power Semiconductor Laser, Changchun University of Science and Technology, Changchun 130022, China

□ Corresponding authors.

E-mail address: pengyue83@tsinghua.edu.cn

1. Experimental

1.1 Catalysts preparation

The vanadia based catalysts in this paper were prepared by a traditional impregnation method same as our research group previous study.¹ Catalysts were support on a 100% anatase TiO₂ (Macklin). The active phase is V₂O₅, MoO₃ and WO₃ introduced as dopes. The precursors of these oxides are respectively analytical grade NH₄VO₃ (Sinopharm Chemical Reagent, 99.99%), (NH₄)₆Mo₇O₂₄·4H₂O (Sinopharm Chemical Reagent, 99.99%), (NH₄)₆Mo₇O₂₄·4H₂O (Sinopharm Chemical Reagent, 99.99%). The Mo/VTi catalyst was with V₂O₅ content of 1% w/w and MoO₃ content of 5% w/w. The Mo-W/VTi catalyst was with V₂O₅ content of 1% w/w, MoO₃ content of 1% w/w and WO₃ content of 1% w/w.

1.2 Catalytic tests

Analysis of the reactants and products were performed on-line with GASMET FTIR DX-4000. The catalytic activity tests for all the catalysts were performed in a fixed-bed quartz reactor. 0.2 g granular catalyst (40–60 mesh) was used for each evaluation.

For single catalytic oxidation activity tests of chlorobenzene (CB), the feed gas stream contained 100 ppm of CB, 3% O_2 and N_2 as the balance. The total flow rate of the feed gas stream was 100 mL/min, the corresponding gas hourly space velocity (GHSV) was 30000 h⁻¹. All the catalytic tests were run from 100 °C to 450 °C in a step mode. At each temperature tested, the catalyst was stabilized for 1 h to achieve steady

state.

For single SCR performance tests, the feed gas mixture contained 500 ppm NO, 500 ppm NH₃, 3% O_2 and N_2 as the balance. The total flow rate of the feed gas stream was 100 mL/min, the corresponding gas hourly space velocity (GHSV) was 30000 h⁻¹. All the catalytic tests were run from 100 °C to 450 °C in a step mode. At each temperature tested, the catalyst was stabilized for 1 h to achieve steady state.

For simultaneous removal activity tests of NO and CB, the feed gas mixture contained 500 ppm NO, 500 ppm NH₃, 100 ppm CB, 3% O₂ and N₂ as the balance. The total flow rate of the feed gas stream was 100 mL/min, the corresponding gas hourly space velocity (GHSV) was 30000 h⁻¹. All the catalytic tests were run from 100 °C to 450 °C in a step mode. At each temperature tested, the catalyst was stabilized for 1 h to achieve steady state.

The N_2 of NH_3 -SCR, CO_x and HCl selectivity of CBCO were calculated based on the following Eqs. (S1)–(S3):

$$N_{2} \text{ selectivity} = \begin{cases} 1 - \frac{2C^{out}N_{2}O}{C^{in}_{NO_{x}} + C^{in}_{NH_{3}} - C^{out}_{NO_{x}} - C^{out}_{NH_{3}}} \end{cases}$$
(S1)

$$CO_{x} \text{ selectivity} = \frac{C^{out}_{CO_{x}} - C^{in}_{CO_{x}}}{6(C^{in}CB - C^{out}CB)[\%]}$$
(S2)

HCl selectivity =
$$\frac{C^{out}_{HCl} - C^{in}_{HCl}}{C^{in}CB - C^{out}CB[\%]}$$
(S3)

1.3 Catalysts characterization

X-ray diffraction patterns (XRD) were recorded on RINT2000 vertical goniometer by using CuK α (λ =0.15405nm, 40 kV, 200 mA) with the 2 θ range from 10-90° at a step of 8°. Specific surface area and pore volume measurements of the catalysts were done by nitrogen physisorption at -196 °C on an adsorption unit (Quantachrome, Autosorb-1). Prior to the analysis, the catalysts were outgassed at 300 °C for 4 h.

Temperature programmed desorption (TPD) was carried out with GASMET FTIR DX-4000. The TPD tests for all the catalysts were performed in a fixed-bed quartz reactor. 0.1 g granular catalyst (40–60 mesh) was used for each evaluation.

NH₃-TPD: The samples were first pretreated at 300 °C for 1 h in N₂ and then cooled down to 30 °C. After that, the samples were exposed to 500 ppm NH₃/N₂ for 1 h at 30 °C until adsorption equilibrium, followed by N₂ purge for another 1 h at 30 °C. Finally, the TPD tests were run at the rate of 10 °C/min from 30 to 750 °C in 100mL/min N₂.

CB-TPD: The samples were first pretreated at 300 °C for 1 h in N₂ and then cooled down to 30 °C. After that, the samples were exposed to 100 ppm CB/N₂ for 1 h at 30 °C until adsorption equilibrium, followed by N₂ purge for another 1 h at 30 °C. Finally, the TPD tests were run at the rate of 10 °C/min from 30 to 750 °C in 100mL/min N₂.

NH₃+CB-TPD: The samples were first pretreated at 300 °C for 1 h in N₂ and then

cooled down to 30 °C. After that, the samples were exposed to 500 ppm NH_3/N_2 and 100 ppm CB/N_2 for 1 h at 30 °C until adsorption equilibrium, followed by N_2 purge for another 1 h at 30 °C. Finally, the TPD tests were run at the rate of 10 °C/min from 30 to 750 °C with 100mL/min N_2 .

Surface deposition (SD)-TPD: The samples were first pretreated at 300 °C for 1 h in N_2 and then cooled down to 30 °C. After that, the samples were having simultaneous removal reaction of NO and CB for 3 h at 325 °C, followed by N_2 purge for another 1 h until cool down to 30 °C. Finally, the TPD tests were run at the rate of 10 °C/min from 30 to 750 °C in 100mL/min N_2 .

Temperature programmed surface reaction (TPSR) was carried out with GASMET FTIR DX-4000. The TPSR tests for all the catalysts were performed in a fixed-bed quartz reactor. 0.1 g granular catalyst (40–60 mesh) was used for each evaluation. The samples were first pretreated at 300 °C for 1 h in N₂ and then cooled down to 30 °C. After that, the samples were exposed to 500 ppm NH₃/N₂, 500 ppm NO/N₂, 100 ppm CB/N₂ and 3% O₂ for 1 h at 30 °C until adsorption equilibrium, followed by N₂ purge for another 1 h at 30 °C. Finally, the TPSR tests were run at the rate of 10 °C/min from 30 to 750 °C in 100mL/min 3% O₂/N₂.

TG-IR-MS tests were run by TG-IR-GC/MS triplex analyzer (PerkinElmer). 100 mg granular catalyst (40–60 mesh) was used for each evaluation. Helium was used as the carrier gas to carry the compounds desorbed from TG process to IR and MS units. The TG unit was run at the rate of 10 °C/min from 30 to 1000 °C. Samples were monitored online by MS in the scanning range of 45–300 (m/z).

The XRD patterns of the prepared catalysts are obtained in Fig. S1, and the only observed peaks can be attributed to the TiO_2 anatase, V_2O_5 , MoO_3 and WO_3 are well dispersed on the supports. The general description of the catalysts is shown in Table S1.

Fig. S1. XRD patterns of the vanadia based catalysts.

	Mo/VTi	Mo-W/VTi	W/VTi
SA (m^2g^{-1})	63.53	62.88	58.78
$PV (cm^3g^{-1})$	0.31	0.31	0.31

Table S1. General description of the vanadia catalysts: specific surface, pore volume.

Fig. S2. SCR performance of: Mo/VTi, Mo-W/VTi, W/VTi catalysts with 5% H₂O at 225 °C. Reaction conditions: $[NH_3] = [NO] = 500$ ppm, [CB] = 100 ppm, $[O_2] = 3\%$, catalyst mass = 200 mg, total flow rate = 100 mL min⁻¹, gas hourly space velocity (GHSV) = 30000 cm³ g⁻¹ h⁻¹.

Fig. S3. H₂-TPR results of Mo/VTi, Mo-W/VTi and W/VTi catalysts in the range of 100-900 °C.

For Mo/VTi, two bands roughly at 400 °C and 750 °C were found. The peak at low temperature belongs to the reduction of V^{5+} to V^0 , Mo^{6+} to Mo^{3+} , while the band at high temperature belongs to the reduction of Mo^{3+} to Mo^0 .

For W/VTi, two bands roughly at 450 °C and 800 °C were found. The peak at low temperature belongs to the reduction of V^{5+} to V^0 , W^{6+} to W^{4+} , while the band at high temperature belongs to the reduction of W^{4+} to W^0 .

Compared with the reduction peaks of W/VTi, the two reduction peaks of Mo/VTi were located at lower temperatures.

Fig. S4. TPD results of Mo/VTi catalyst.

Fig. S5. The CO, CO₂ and HCl selectivity results of Mo/VTi catalyst with/without the presence of SCR reactants in the reaction atmosphere.

Fig. S6. IR spectra of CBCO decomposition products over Mo/VTi catalyst without (a)/with (b) the presence of SCR reactants below 350°C.

Fig. S7. IR spectra of CBCO decomposition products over Mo/VTi catalyst without (a)/with (b) the presence of SCR reactants above 350°C.

Fig. S8. TPD results of NH_4Cl deposited Mo/VTi catalyst.

The pretreatment of NH₄Cl deposited Mo/VTi catalyst:

the NH₄Cl deposited Mo/VTi catalysts were prepared by impregnation of 2 g fresh Mo/VTi catalyst with 50 ml of 0.4 mol/L aqueous solution of NH₄Cl, stirred at 60 °C by a magnetic stirring apparatus until excess water was evaporated, followed by drying in air at 60 °C for 12 h.

Fig. S9. a) SD-TPD results of Mo/VTi catalyst with N_2 as carrier gas, b) SD-TPD results of W/VTi catalyst with N_2 as carrier gas, c) SD-TPD results of Mo/VTi catalyst with 20% O_2 in the carrier gas, d) SD-TPD results of W/VTi catalyst with 20% O_2 in the carrier gas.

The SD-TPD results of Mo/VTi and W/VTi catalysts with N₂ as carrier gas are shown in Fig. S9a–b. For W/VTi, the desorption peak of HCl was not even detected, and the desorption peak of NH₃ was large and wide. Therefore, it can confirm that NH₄Cl was not deposited at both catalysts' surface at 325 °C. And the desorption peak of NH₃ was originated from the NH₃ species that adsorbed at both catalysts' surface. Meanwhile, it's worth noticed that the amount of NH₃ desorbed form the surface of W/VTi was significantly higher than the amount of NH₃ desorbed form the surface of Mo/VTi. The SD-TPD results of Mo/VTi and W/VTi catalysts with 20% O₂ in the carrier gas are shown in Fig. S9c–d. As shown in Fig. S9c, the HCl was generated at relatively low temperature with a higher amount, compare to Fig. S9a. The desorption peak of HCl started to appeared at about 470 °C, reached the top at about 570 °C. As shown in Fig. S9d, the desorption peak of HCl started to appeared at about 590 °C, reached the top at about 650 °C. For both catalysts, the desorption of the deposited Cl species was promoted with the presence of O_2 .

Carbon tetrachloride

Fig. S10. The IR spectrum of gas phase CCl_4 from NIST database. 4

Ethylene, tetrachloro-

Fig. S11. The IR spectrum of gas phase $C_2 Cl_4$ from NIST database. 5

Fig. S12. TG results of Mo/VTi catalyst after three hours reaction at 325 °C.

Fig. S13. XPS spectra of V 2p over fresh (a) and used (b) Mo/VTi catalysts.

Table S2. Vanadium valence distribution and Cl surface atomic ratio in Mo/VTi

Catalyst	V ³⁺ /V(%)	V ⁴⁺ /V(%)	V ⁵⁺ /V(%)
Mo/VTi-fresh	31.81	50.90	17.24
Mo/VTi-used 3h	45.62	45.13	9.25

samples obtained from XPS.

2. Computational details

Vienna Ab-initio Simulation Package code (VASP 5.2)² was applied for carrying out DFT computations. A $2 \times 2 \times 1$ Mo/VTi supercell and a $2 \times 2 \times 1$ W/VTi supercell were built respectively. We optimized these supercells with Perdew-Burke-Ernzerh of generalized gradient approximation (GGA-PBE).³ The plane-wave cutoff energy was set to be 400 eV. Brillouin-zone integration was sampled by $2 \times 2 \times 1$ k-points.

References

- S1. X. Huang, Y. Peng, X. Liu, K. Z. Li, Y. X. Deng and J. H. Li, Catal Commun, 2015, 69, 161-164.
- S2. G. Kresse and J. Furthmuller, Phys Rev B, 1996, 54, 11169-11186.
- S3. J. P. Perdew, K. Burke and M. Ernzerhof, Phys Rev Lett, 1996, 77, 3865-3868.
- S4. https://webbook.nist.gov/cgi/cbook.cgi?ID=C56235&Units=SI&Type=IR-SPEC&Index=2#IR-SPEC
- S5. https://webbook.nist.gov/cgi/cbook.cgi?ID=C127184&Units=SI&Type=IR-SPEC&Index=1#IR-SPEC