Supporting Information

Sulfur Vacancies-Tailored NiCo₂S₄ Nanosheet Arrays for Hydrogen Evolution Reaction at All pH Values

Xiaoliang Guo,^{a,b} Zhiming Liu,^{a,b}Fang Liu,^{a,b} Jun Zhang,^{*,a,b} Lekai Zheng,^{a,b} Yongchuan Hu,^{a,b} Jing Mao,^c Hui Liu,^{*,a} Yanming Xue,^{a,b} Chengchun Tang^{a,b}

^aSchool of Material Science and Engineering, Hebei University of Technology, Dingzigu Road 1, Tianjin 300130, P. R. China

^bHebei Key Laboratory of Boron Nitride Micro and Nano Materials, Guangrongdao Road 29, Tianjin 300130, P. R. China

^cSchool of Materials Science and Engineering, Tianjin University, Tianjin Haihe Education Park, Tianjin 300072, P. R. China

Electronic Supplementary Information (ESI) available. See DOI: 10. 1039/x0xx00000x

E-mail address: junnano@gmail.com (J. Zhang), liuhuihebut@163.com (H. Liu)

Figure S1. XRD pattern of NiCo hydroxide nanosheet arrays precursors on carbon cloth.

Figure S2. SEM of NiCo hydroxide nanosheet arrays precursors on carbon cloth.

Figure S3. Nitrogen adsorption-desorption isotherms curve of NiCo $_2S_4$ -1/CC, NiCo $_2S_4$ -2/CC and NiCo $_2S_4$ -3/CC.

Figure S4. SEM and corresponding EDS for a) NiCo₂S₄-1/CC, b) NiCo₂S₄-2/CC and c) NiCo₂S₄-3/CC.

Figure S5. HETEM images of $NiCo_2S_4$ -2/CC (a-d)

Figure S6. XPS spectra of three samples.

Figure S7. EPR curves of NiCo₂S₄-1/CC, NiCo₂S₄-2/CC, NiCo₂S₄-3/CC, NiCo₂S₄-4/CC,

NiCo₂S₄-5/CC and NiCo₂S₄-g/CC.

Figure S8. a) LSV and Tafel curves b) of NiCo₂S₄-1/CC, NiCo₂S₄-2/CC, NiCo₂S₄-3/CC, NiCo₂S₄-4/CC, NiCo₂S₄-5/CC and NiCo₂S₄-g/CC.

Figure S9. XRD pattern of NiCo₂S₄-g/CC.

Figure S10. Voltammograms of a) NiCo₂S₄-1/CC, b) NiCo₂S₄-2/CC and c) NiCo₂S₄-1/CC recording at the scan rates of 20, 40, 60, 80, and 100 mV s⁻¹ in 1M KOH.

Figure S11. LSV curves of NiCo₂S₄-1/CC, NiCo₂S₄-1/CC and NiCo₂S₄-3/CC normalized by

special surface area.

Figure S12. Durability measurement of NiCo₂S₄-2/CC with a continuous current density of -120

mA cm⁻².

Figure S13. a-b) SEM images of $NiCo_2S_4$ -2/CC electrode after 36000 s durability measurement. c) Corresponding EDS spectrum. d) XRD pattern of $NiCo_2S_4$ -2/CC electrocatalyst after 36000 s stable

Figure S14. EPR curve after 10 h of continuous test.

Figure S15. Nyquist plots of NiCo₂S₄-1/CC, NiCo₂S₄-2/CC, and NiCo₂S₄-3/CC in 0.5 M H₂SO₄.

Figure S16. C_{dl} (a) and different cyclic voltammograms of NiCo₂S₄-1/CC (b), NiCo₂S₄-2/CC (c) and NiCo₂S₄-3/CC (d) in 0.5 M H₂SO₄

Figure S17. a) Polarization curves of as-prepared samples normalized by ECSA in 0.5 M H₂SO₄, b) Calculated TOF vaule at overpotential of -200 mV in 0.5 M H₂SO₄.

Figure S18. Nyquist plots of NiCo₂S₄-1/CC, NiCo₂S₄-2/CC, and NiCo₂S₄-3/CC in 1 M PBS.

Figure S19. C_{dl} (a) and different cyclic voltammograms of NiCo₂S₄-1/CC (b), NiCo₂S₄-2/CC (c) and NiCo₂S₄-3/CC (d) in 1 M PBS.

Figure S20. a) Polarization curves of as-prepared samples normalized by ECSA in 0.5 M H₂SO₄, b) Calculated TOF value at overpotential of -200 mV in 1 M PBS.

Table S1. EDS and ICP-OES results of Ni, Co and S in NiCo₂S₄.

	EDS (Ni: Co: S) molar ratio	ICP (Ni: Co: S) molar ratio	NiCo2S4 (Ni/Co: S by ICP) molar ratio
NiCo ₂ S ₄ -1/CC	0.79:1.76:2.43	0.82:1.72:2.46	1:2.09:3.0
NiCo ₂ S ₄ -2/CC	1.43:3.16:4.67	0.61:1.40:2.13	1:2.29:3.5
NiCo ₂ S ₄ -3/CC	4.70:10.96:18.62	1.03:2.11:3.82	1:2.05:3.71

Catalyst	Substrate	Electrolyte	J (mA cm ⁻²)	η (mV vs RHE)	Ref.
NiCo ₂ S ₄ /CC	CC ^a	1M KOH	10	150	This work
NiCo ₂ S ₄ /NF	NF ^a	1M KOH	10	210	1
NiCo ₂ S ₄ @NiCo ₂ O ₄ /NF	NF ^c	1M KOH	10	190	2
NiCo ₂ S ₄	GCEd	1M KOH	10	148	3
NiCo ₂ S ₄ /NF	NF	1M KOH	10	169	4
NiCo ₂ S ₄ /NF	NF	1M KOH	10	191	5
NiCo ₂ S ₄ @Pd	GCE	1M KOH	10	87	6
N-NiCo ₂ S ₄	NF	1M KOH	10	41	7
Ni-Co-S-P/Graphene	GCE	1M KOH	10	117	8
Co ₉ S ₈ -Ni _x S _y /NF	NF	1M KOH	10	163	9
MoS ₂ -Ni _x S _y /NF	CFP ^e	1M KOH	10	139	10
Co ₉ S ₈ -NiCo ₂ S ₄	GCE	1M KOH	10	172	11
NiCoS@C-dot	GCE	1M KOH	10	232	12
CoS@Ni ₃ S ₂	NF	1M KOH	10	204	13
Ni ₂ P/Ni ₃ S ₂	NF	1M KOH	10	130	14
MoS_2	RD E ^f	1M KOH	10	154	15
CoS_2	GCE	1M KOH	10	193	16
N-Ni ₃ S ₂ /NF	NF	1M KOH	10	155	17
Se-(NiCo)S _x /(OH)x	NF	1M KOH	10	103	18
CoP	GCE	1M KOH	10	154	19
rGO@NiMnCo	GCE	1M KOH	10	151	20

Table S2. Comparison of HERR performances of $NiCo_2S_4$ -2/CC with previouslyreported non-precious metal HER electrocatalysts.

CC^a: Carbon Cloth NF^b: Ni Foam GCE^c: Glassy Carbon Electrode CFP^d: Carbon Fiber Paper RDE^f :

Rotating

Disk

Electrode

References

- 1. A. Sivanantham, P. Ganesan, and S. Shanmugam, Adv. Funct. Mater., 2016, 26, 4661-4672.
- 2. X. Du, W. Lian, and X. Zhang, Int. J. Hydrogen Energy, 2018, 43, 20627-20635.
- C. Zequine, S. Bhoyate, K. Siam, P. K. Kahol, N. Kostoglou, C. Mitterer, S. J. Hinder, M. A. Baker, G. Constantinides, C. Rebholz, G. Gupta, X. Li, and R. K. Gupta, *Surf. Coat. Technol.*, 2018, 354, 306-312.
- 4. J. Yu, C. Lv, L. Zhao, L. Zhang, Z. Wang, and Q. Liu, Adv. Mater. Interface, 2018, 5, 1701396.
- 5. Y. Gong, Y. Lin, Z. Yang, J. Wang, H. Pan, Z. Xu, and Y. Liu, *ChemistrySelect*, 2019, 4, 1180-1187.
- G. Sheng, J. Chen, Y. Li, H. Ye, Z. Hu, X. Z. Fu, R. Sun, W. Huang, and C. P. Wong, ACS Appl Mater Interfaces, 2018, 10, 22248-22256.
- Y. Wu, X. Liu, D. Han, X. Song, L. Shi, Y. Song, S. Niu, Y. Xie, J. Cai, S. Wu, J. Kang, J. Zhou, Z. Chen, X. Zheng, X. Xiao, and G. Wang, *Nat Commun*, 2018, 9, 1425.
- 8. H. J. Song, H. Yoon, B. Ju, G.-H. Lee, and D.-W. Kim, Adv. Energy Mater, 2018, 8, 1802319.
- D. Ansovini, C. J. Jun Lee, C. S. Chua, L. T. Ong, H. R. Tan, W. R. Webb, R. Raja, and Y.-F. Lim, J. Mater. Chem. A, 2016, 4, 9744-9749.
- 10. L. Sun, T. Wang, L. Zhang, Y. Sun, K. Xu, Z. Dai, and F. Ma, J. Power Sources, 2018, 377, 142-150.
- 11. M. Basu, Chem. Asian J., 2018, 13, 3204-3211.
- 12. Y. Ali, V.-T. Nguyen, N.-A. Nguyen, S. Shin, and H.-S. Choi, *Int. J.Hydrogen Energy*, 2019, 44, 8214-8222.
- 13. S. Shit, S. Chhetri, W. Jang, N. C. Murmu, H. Koo, P. Samanta, and T. Kuila, ACS Appl. Mater Interfaces, 2018, 10, 27712-27722.
- L. Zeng, K. Sun, X. Wang, Y. Liu, Y. Pan, Z. Liu, D. Cao, Y. Song, S. Liu, and C. Liu, *Nano Energy*, 2018, **51**, 26-36.
- 15. Y. Yin, J. Han, Y. Zhang, X. Zhang, P. Xu, Q. Yuan, L. Samad, X. Wang, Y. Wang, Z. Zhang, P. Zhang, X. Cao, B. Song, and S. Jin, *J. Am. Chem. Soc.*, 2016, **138**, 7965-7972.
- 16. X. Ma, W. Zhang, Y. Deng, C. Zhong, W. Hu, and X. Han, Nanoscale, 2018, 10, 4816-4824.
- 17. T. Kou, T. Smart, B. Yao, I. Chen, D. Thota, Y. Ping, and Y. Li, *Adv. Energy Mater.*, 2018, **8**, 1703538.
- 18. C. Hu, L. Zhang, Z. J. Zhao, A. Li, X. Chang, and J. Gong, Adv. Mater., 2018, 30, e1705538.
- 19. H. Li, X. Zhao, H. Liu, S. Chen, X. Yang, C. Lv, H. Zhang, X. She, and D. Yang, *Small*, 2018, 14, e1802824.
- R. Miao, J. He, S. Sahoo, Z. Luo, W. Zhong, S.-Y. Chen, C. Guild, T. Jafari, B. Dutta, S. A. Cetegen, M. Wang, S. P. Alpay, and S. L. Suib, *ACS Catal.*, 2016, 7, 819-832.