Supporting Information

Selective hydrogenation of 2-pentenal using highly dispersed Pt catalysts supported on ZnSnAl mixed metal oxides derived from layered double hydroxides

Huanjun Wang, Xiaocheng Lan, Shiqing Wang, Babar Ali, Tiefeng Wang*

Beijing Key Laboratory of Green Reaction Engineering and Technology Department of Chemical Engineering, Tsinghua University, Beijing 100084, China.

Figure S1. SEM images of (a)-(d) $Zn(xSn)Al-LDH/Al_2O_3$ (x = 1, 2, 4, 8), (e) $ZnAl-LDH/Al_2O_3$ and (f)

MgSnAl-LDH/Al₂O₃.

Figure S2. N₂ adsorption-desorption isotherms and (inserted) mesopore size distribution of (a)-(d) Zn(xSn)Al-LDH/Al₂O₃ (x=1, 2, 4 and 8), (e) ZnAl-LDH/Al₂O₃, and (f) MgSnAl-LDH/Al₂O₃.

Figure S3. (a) XRD patterns and (b) TG profiles of fresh and used Pt/Zn(8Sn)(Al)O/Al₂O₃ catalysts.

Figure S4. HAADF-STEM images of (a)-(b) and (e) fresh and (c)-(d) and (f) used

Pt/Zn(8Sn)(Al)O/Al₂O₃ catalysts.

Entry	Catalyst	Pt/wt%	Sn/wt%
1	Pt/Al ₂ O ₃	0.09	0
2	Pt-SnO _x /Al ₂ O ₃	0.12	0.19
3	Pt/Mg(Sn)(Al)O/Al ₂ O ₃	0.12	0.26
4	Pt-SnO _x /Zn(Al)O/Al ₂ O ₃	0.13	0.21
5	Pt/Zn(1Sn)(Al)O/Al ₂ O ₃	0.11	0.24
6	Pt/Zn(2Sn)(Al)O/Al ₂ O ₃	0.14	0.48
7	Pt/Zn(4Sn)(Al)O/Al ₂ O ₃	0.12	1.08
8	Pt/Zn(8Sn)(Al)O/Al ₂ O ₃	0.11	1.80

 Table S1. ICP results of different catalysts.

Table S2. H₂-TPR results of fresh catalysts.

Entry	Catalyst	Tempe	Temperature of peak/oC		Signal for H ₂ consumption/a.u. g-1 cat
1	PtO ₂ /Al ₂ O ₃	259	447		12248
2	SnO_2/Al_2O_3	458			18323
3	PtO_2 - SnO_2/Al_2O_3	281	402		22764
4	PtO ₂ -SnO ₂ /Zn(Al)O/Al ₂ O ₃	401	453	535	25511
5	PtO ₂ /Zn(1Sn)(Al)O/Al ₂ O ₃	387	450	515	28834
6	PtO ₂ /Zn(2Sn)(Al)O/Al ₂ O ₃	443			37730
7	PtO ₂ /Zn(4Sn)(Al)O/Al ₂ O ₃	459			49041
8	PtO ₂ /Zn(8Sn)(Al)O/Al ₂ O ₃	470			96481
9	PtO ₂ /Mg(Sn)(Al)O/Al ₂ O ₃	401	454		30373

Catalysta	Zn (II)	Sn(Sn(IV)		(II)	Sn ⁰	
Catalysis	B.E. (eV)	B.E. (eV)	B.E. (eV) Content (%)		Content (%)	B.E. (eV)	Content (%)
Pt-SnO _x /Al ₂ O ₃	/	487.62	44.2	486.64	49.5	485.6	6.3
SnO _x /Al ₂ O ₃	/	487.25	71.3	486.31	28.7	485.5	0.0
Pt-SnO _x /Zn(Al)O/Al ₂ O ₃	498.14	486.7	33.1	485.99	41.0	485.32	25.9
SnO _x /Zn(Al)O/Al ₂ O ₃	498.25	486.88	33.3	486.08	42.2	485.31	24.5
Pt/Zn(1Sn)(Al)O/Al ₂ O ₃	498.88	487.44	47.2	486.45	44.8	485.5	8.0
Zn(1Sn)(Al)O/Al ₂ O ₃	499.51	487.92	43.5	486.96	54.7	485.5	1.8

 Table S3. XPS results of different catalysts.

Table S4. Catalytic performance of different catalysts for 2-pentenal hydrogenation.

Entry	Catalyst	Reaction	Conversion/%		Catalyst		
	y	time/h		n-pentanal	n-pentanol	2-pentenol	productivity*/h-1
1	Pt/Al ₂ O ₃	1	42.7	74.2	21.4	4.4	798.9
2	$Pt-SnO_x/Al_2O_3$	8	39.9	66.3	18.4	15.3	192.3
3	Pt/Mg(Sn)(Al)O/Al ₂ O ₃	3	48.6	44.7	28.6	26.7	345.0
4	Pt-SnO _x /Zn(Al)O/Al ₂ O ₃	24	40.5	30.3	14	55.7	75.8
5	Pt/Zn(1Sn)(Al)O/Al ₂ O ₃	6	43.7	22.5	17.7	59.8	206.6

Reaction conditions: 0.3 g 2-pentenal, 0.3 g catalyst, 50 mL cyclohexane, 80 °C, and 3.0 MPa H₂. *Catalyst productivity was calculated by dividing the moles of 2-pentenal converted per hour by total moles of Pt determined by ICP-OES, using the results after 2 h of reaction.

Entry	Cataluat	Desetion time /h	Commenter (0/		Catalyst		
	Catalyst	Reaction time/n	Conversion/%	n-pentanal	n-pentanol	2-pentenol	productivity/h-1
1	Pt/Zn(1Sn)(Al)O/Al ₂ O ₃	2	19.6	25.2	15.6	59.2	206.6
2	Pt/Zn(2Sn)(Al)O/Al ₂ O ₃	2	18.3	20.9	17.1	62	151.6
3	Pt/Zn(4Sn)(Al)O/Al ₂ O ₃	8	25	20.6	7.3	72.1	91.8
4	Pt/Zn(8Sn)(Al)O/Al ₂ O ₃	24	28.5	12.2	5.6	82.2	47.4

Table S5. Catalytic performances of Zn-based catalysts with different Sn content for 2-pentenal hydrogenation.

Reaction conditions are the same as in Table S2.

Catalysts	Metal loading/%	T/ºC	P/MPa	t/h	Conversion/%	Selectivity/%	Catalyst productivity*/h ⁻¹	Ref.
Ir-ReO _x /SiO ₂	4.00	30	0.8	1	53.1	94.8	153	[1] ^a
Pt/SiO ₂	0.22	80	3.0	1	11.3	4.3	357.4	
Pt-0.5SnO _x /SiO ₂	0.22	80	3.0	1	10.1	21.4	319.4	
Pt-1.0SnO _x /SiO ₂	0.25	80	3.0	2	10.4	40.8	144.7	
Pt-1.5SnO _x /SiO ₂	0.25	80	3.0	2	13.7	61.5	63.5	[つ]b
Pt@ZIF-8	0.58	80	3.0	3	11.9	31.0	47.6	[2]°
Pt-0.5SnO _x @ZIF-8	0.56	80	3.0	5	10.8	48.5	8.9	
Pt-1.0SnO _x @ZIF-8	0.54	80	3.0	7	11.6	62.0	7.1	
Pt-1.5SnO _x @ZIF-8	0.53	80	3.0	17	10.6	80.9	2.7	
Pt/Zn(8Sn)(Al)O/Al ₂ O ₃	0.11	80	3.0	24	28.5	82.2	47.4	this work ^c

Table S6. Summary of different heterogeneous catalysts for selective hydrogenation of 2-pentenal to 2-pentenol in recent published works.

Reaction conditions: ^a3.0 mmol reactant, 50 mg catalyst, 3.0 g H₂O; ^b0.3 g reactant, 0.3 g catalyst, 30 mL cyclohexane; ^c0.3 g reactant, 0.3 g catalyst, 50 mL cyclohexane. ^{*}Catalyst productivity was calculated by dividing the moles of substrate converted per hour by total moles of metal.

Catalysts	Metal loading/%	T/ºC	P/MPa	t/h	Conversion/%	Selectivity/%	Catalyst productivity*/h-1	Ref.
MIL-101(Cr)@Pt@MIL-101(Fe) ^{8.83}	3.60	25	3.0	10	85.0	64.4	28.8	
MIL-101(Fe)@Pt@MIL-101(Fe)9.2	4.70	25	3.0	17	71.1	87.8	14.2	[3] ^a
MIL-101(Fe)@Pt@MIL-101(Fe) ^{22.0}	4.20	25	3.0	24	59.9	92.5	8.5	
Pt-0.23/SiO ₂	0.23	80	3.0	4	32.9	23.3	49.7	[4] ^b
Pt-0.47/ZIF-8	0.47	80	3.0	8	30.3	58.3	4.7	٥٢ ٨٦
Pt-1.16@ZIF-8	1.16	80	3.0	2	31.2	90	7.8	[4]
Pt/Zn(1Sn)(Al)O/Al ₂ O ₃	0.11	80	3.0	36	29.2	79.5	26.0	this work ^d

Table S7. Summary of heterogeneous catalysts for selective hydrogenation of 3-methyl-2-butenal to prenol in recent works.

Reaction conditions: a0.4 mmol reactant, 0.23 mg Pt NPs, 2 mL isopropanol; b0.5 g reactant, 0.5 g catalyst, 100 mL cyclohexane; c0.3 g reactant, 1.2 g catalyst, 100 mL cyclohexane; d0.3 g reactant, 0.3 g catalyst, 50 mL cyclohexane. *Catalyst productivity was calculated by dividing the moles of substrate converted per hour by total moles of metal.

Catalysts	Metal loading/%	T/ºC	P/MPa	t/h	Conversion/%	Selectivity/%	Catalyst productivity*/h-1	Ref.	
Pt/ZnO-175	5.0	50	0.34	/	10.6	95.0	7.2	[5] ^a	
CuH5	5.5	100	1.0	/	10	55.0	4.0	[6]b	
Cu/SiO ₂	8.1	100	1.0	/	10	7.0	10.8	[0]*	
Au5/CeO2240	4.72	80	1.0	4	/	26	10.8	[7] ^c	
Ag/SBA-15	6.9	140	1.4.0	2.42	95	54	2.5	۲٥٦d	
Ag–In/SBA-15	6.1/1.9	140	2.0	12.33	99	87	1.8	[8]"	
Pt/ZrO ₂ -180	6.4				37	4	14.1		
Pt/ZnO-175	5.1		0.41		1	75	0.5		
Pt/SnO ₂ -270	5	20		0	1	25	0.5	[O]e	
Pt/Fe ₂ O ₃ -130	5.6	30		0.41	8	20	15	8.7	[9]°
Pt/Fe ₃ O ₄ -250	6.1					21	12	8.4	
Pt/TiO2-400	4.5				16	6	8.7		
Au/Mg ₂ AlO	1.20	120	0.93	2	23.6	62.1	94.6	$[10]^{f}$	
Au _{5.0} In _{0.75} /APTMS-SBA-15	4.90	120	2.0	5	94	75	9.2	[11] ^g	
Pt/Al ₂ O ₃	5				86	16	89.9		
Pt/SiO ₂	3				73	18	127.5		
Pt/C	5	25	2.0	0	60	7	62.6	[10]h	
Pt/MgO	2.5	25	2.0	9	70	20	146.9	[12]"	
Pt/K-10	2.5				82	31	171.8		
Pt/BenH	3.2				84	43	137.4		
Pt/ZnO ex-nit	1.0	80	0.4	5	18	26	134.4	[13] ⁱ	

Table S8. Summary of heterogeneous catalysts for liquid-phase selective hydrogenation of crotonaldehyde to crotyl alcohol in recent works.

Pt/ZnO ex-cl	1.0				19	45	136.4	
$Pd-Pb/\alpha-Al_2O_3$	0.2				3	4	205.8	
$Pd-Zn/\alpha-Al_2O_3$	0.2				6	1	328.8	
Ir-ReO _x /SiO ₂	4.0	30	0.8	1	43.3	95.0	125	[1] ^g
Sn-modified SiO ₂ -coated Pt	3.9	100	2.0	20	4.1	100	0.5	[14] ^k
SiO ₂ -encapsulated SnPt	7.3	100	0.1	20	41.1	66.7	5.9	[15] ¹

Reaction conditions: ^a 100 mg catalyst, 20 mL water/dioxane solvent (1:1(v/v)), 0.5 M crotonaldehyde; ^b 200 mg catalyst, 0.1 M crotonaldehyde in isopropanol; ^c 200 mg catalyst, 0.04 M crotonaldehyde, 60 mL isopropanol; ^d 200 mg catalyst, 0.1 ml crotonaldehyde, 29 ml n-hexane; ^e 100 mg catalyst, 20 mL 1,4-dioxane, 0.5 M crotonaldehyde; ^f 0.5 g catalyst, 2 ml crotonaldehyde, 78 ml cyclohexane; ^g 1.0 g catalyst, 1.0 ml crotonaldehyde, 49.0 ml hexane; ^h 50 mg catalyst, 0.57 M crotonaldehyde, 20 mL 2-propanol; ⁱ 0.150 g catalyst, 0.07 M crotonaldehyde in isopropanol; ^g 50 mg catalyst, 3.0 mmol substrate, 3.0 g H₂O; ^k 50 mg catalyst, 0.2 mL crotonaldehyde, 4 mL 2-methyl-2-butanol; ¹ 22.5 mg catalyst, 0.2 mL crotonaldehyde, 4 mL 2-methyl-2-butanol. *Catalyst productivity was calculated by dividing the moles of substrate converted per hour by total moles of metal.

REFERENCES

- 1. M. Tamura, K. Tokonami, Y. Nakagawa and K. Tomishige, ACS Catal., 2016, 6, 3600-3609.
- 2. X. Lan, K. Xue and T. Wang, J. Catal., 2019, 372, 49-60.
- 3. M. Zhao, K. Yuan, Y. Wang, G. Li, J. Guo, L. Gu, W. Hu, H. Zhao and Z. Tang, *Nature*, 2016, 539, 76-80.
- 4. X. Lan, N. Huang, J. Wang and T. Wang, Catal. Sci. Technol., 2017, 7, 2601-2608.
- 5. J. Hidalgo-Carrillo, A. Marinas, J. M. Marinas, J. J. Delgado, R. Raya-Miranda and F. J. Urbano, *Appl. Catal. B*, 2014, **154-155**, 369-378.
- 6. V. Gutierrez, M. Dennehy, A. Diez and M. A. Volpe, Appl. Catal. A, 2012, 437-438, 72-78.
- 7. B. Campo, G. Santori, C. Petit and M. Volpe, Appl. Catal. A, 2009, 359, 79-83.
- 8. L. Tian, Q. Yang, Z. Jiang, Y. Zhu, Y. Pei, M. Qiao and K. Fan, Chem. Commun., 2011, 47, 6168-6170.
- 9. J. Hidalgo-Carrillo, M. A. Aramendía, A. Marinas, J. M. Marinas and F. J. Urbano, Appl. Catal. A, 2010, 385, 190-200.
- 10. H.-Y. Chen, C.-T. Chang, S.-J. Chiang, B.-J. Liaw and Y.-Z. Chen, Appl. Catal. A, 2010, 381, 209-215.
- 11. Q.-Y. Yang, Y. Zhu, L. Tian, S.-H. Xie, Y. Pei, H. Li, H.-X. Li, M.-H. Qiao and K.-N. Fan, Appl. Catal. A, 2009, 369, 67-76.
- 12. I. Kun, G. Szöllösi and M. Bartók, J. Mol. Catal. A: Chem., 2001, 169, 235-246.
- 13. B. C. Campo, M. A. Volpe and C. E. Gigola, Ind. Eng. Chem. Res., 2009, 48, 10234-10239.
- 14. K. Taniya, H. Jinno, M. Kishida, Y. Ichihashi and S. Nishiyama, J. Catal., 2012, 288, 84-91.
- 15. K. Taniya, C. H. Yu, S. C. Tsang, Y. Ichihashi and S. Nishiyama, Catal. Commun., 2011, 14, 6-9.