Electronic Supplementary Information (ESI)

Self-assembled CoTiO₃ nanorods with controllable oxygen vacancy

for efficient photochemical reduction of CO₂ to CO

Yong Xu,^{‡*ab} Jiang Mo,^{‡a} Xiaoxia Wang^a and Shujiang Ding^b

^aSchool of Materials Science and Engineering, Dongguan University of Technology, Dongguan 523808, China.

^bDepartment of Applied Chemistry, School of Science, Xi'an Jiaotong University, Xi'an, 710049, P.R. China

*Corresponding Author E-mail: Y. Xu, yongxu@mail.ipc.ac.cn

Fig. S1. Survey-scan XPS spectra of CoTiO₃ and OV-CoTiO₃.

Fig. S2. XRD patterns of OV-CTO and pure CTO.

Fig. S3. Raman spectra of CTO and CTO-3 samples.

Fig. S4. ¹H NMR spectra of TEOA, photosensitizer, CH₃CN and liquid phase substances after photoreduction.

Fig. S5. XRD pattern of OV-CTO (the dosage of NaBH₄ is 3 molar equivalent at 550 °C).

Fig. S6. CO₂-TPD spectra.

Fig. S7. N_2 adsorption-desorption isotherms and the corresponding pore size distribution (inset) of (a) CTO and (b) CTO-3.

Fig. S8. Recycling test of CTO-3 in photocatalytic CO₂ reduction.

Fig. S9. XRD pattern of recycling CTO-3.

Fig. S10. EPR spectrum of used CTO-3.

Entry	Catalyst/ CTO-3	Photosensitizer/ [Ru(bpy) ₃]Cl ₂ ·6H ₂ O	CO ₂	TEOA	Light	Yield of CO (µmol)	Yield of H ₂ (µmol)
1	×	\checkmark	\checkmark	\checkmark	\checkmark	0	1.1
2	\checkmark	×	\checkmark	\checkmark	\checkmark	0	0.4
3 ^b	\checkmark	\checkmark	×	\checkmark	\checkmark	0	14.3
4	\checkmark	\checkmark	\checkmark	×	\checkmark	0	0
5	\checkmark	\checkmark	\checkmark	\checkmark	×	0	0.1
6	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	31.8	18.3

Table S1. Control experiments of photocatalytic CO₂ reduction.^a

^aConditions: CTO-3 (1 mg), $[Ru(bpy)_3]Cl_2 \cdot 6H_2O$ (5 mg), acetonitrile : H_2O : TEOA = 4 mL : 1 mL : 1.5 mL in the quartz tube of 55 mL, CO₂ (1 atm), irradiation with white LED lamp at room temperature. ^bDegassed with argon.