Zn modified Co@N-C composites with adjusted Co particle sizes as catalysts for efficient electroreduction of CO₂

*aSchool of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, P. R. China.

*Corresponding author:

E-mail: miaozhichao@sdut.edu.cn (Z. Miao); zhoujin@sdut.edu.cn (J. Zhou).
Figure S1. TG-DSC characterizations of the as-prepared Zn-Co-ZIF.

Figure S2. N$_2$ adsorption-desorption isotherms of Zn-Co@N-C-X with different Co contents and Zn-Co@N-C-25-Y with different pyrolysis temperatures.
Figure S3. SEM image of Zn-Co@N-C-X with different Co contents.
Figure S4. SEM image of Zn-Co@N-C-25-Y with different pyrolysis temperatures.
Figure S5. STEM and line-scanning EDS spectra of Zn-Co@N-C-25.

Figure S6. Elemental mapping of Zn-Co@N-C-100.

Figure S7. Elemental mapping of Zn-Co@N-C-0.
Figure S8. Elemental mapping of Zn-Co@N-C-25-600.

Figure S9. Elemental mapping of Zn-Co@N-C-25-1000.
Figure S10. XPS spectra of Zn-Co@N-C-X with different Co contents: (a) C 1s and (b) O 1s.
Figure S11. XPS spectra of Zn-Co@N-C-25-Y with different pyrolysis temperatures:

(a) C 1s and (b) O1s.
Figure S12. Cyclic voltammetry and charging current density differences plotted against scan rates: (a, b) Zn-Co@N-C-100, (c, d) Zn-Co@N-C-50, (e, f) Zn-Co@N-C-25, (g, h) Zn-Co@N-C-17 and (i, j) Zn-Co@N-C-0.
Figure S13. Cyclic voltammetry and charging current density differences plotted against scan rates: (a, b) Zn-Co@N-C-25-600, (c, d) Zn-Co@N-C-25-700, (e, f) Zn-Co@N-C-25-900 and (g, h) Zn-Co@N-C-25-1000.
Figure S14. Catalytic performance of Zn-Co@N-C tested under different potentials.
Figure S15. SEM images of Zn-Co@N-C-25/CP before (a-c) and after reaction (d-f).

Figure S16. Elemental mapping of Zn-Co@N-C-25/CP before reaction.

Figure S17. Elemental mapping of Zn-Co@N-C-25/CP after reaction.
Figure S18. Raman spectra of carbon paper and Zn-Co@N-C-25/CP before and after reaction.