Supporting Information

The Direct Synthesis of Hydrogen Peroxide from H₂ and O₂ Using Pd-Ga and Pd-In Catalysts

Sheng Wang ^{a,b}, Richard J. Lewis^c, Dmitry E. Doronkin ^{a,d}, David J. Morgan^c, Michael Zimmermann^a,

Jan-Dierk Grunwaldt^{a,d}, Graham J. Hutchings^{c*}, Silke Behrens^{a,b*}

^a Institute of Catalysis Research and Technology (IKFT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1,76344 Eggenstein-Leopoldshafen, Germany.

^b Institute of Inorganic Chemistry, Ruprecht-Karls University Heidelberg, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany

^c Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, United Kingdom.

^d Institute for Chemical Technology and Polymer Chemistry (ITCP), Karlsruhe Institute of technology (KIT), Engesserstr. 20, 76131 Karlsruhe, Germany.

Metal	Pd:M	то	OLA	Temperatur	Composition
Precursors	(precursors	Ρ	М	e (°C)	(molar ratio)
	molar ratio)	(mL	(mL)		
)			
Pd(acac) ₂		2	40	200	Pd1
Pd(acac) ₂	2:1	2	40	300	$Pd_{0.77}Ga_{0.23}$
Ga(acac) ₃					
Pd(acac) ₂	1:1	2	40	300	$Pd_{0.48}Ga_{0.52}$
Ga(acac) ₃					
Pd(acac) ₂	1:2	2	40	300	Pd _{0.38} Ga _{0.62}
Ga(acac) ₃					
Ga(acac) ₃		2	40	330	Ga1
Pd(acac) ₂	2:1	2	40	300	$Pd_{0.78}In_{0.22}$
In(acac) ₃					
Pd(acac) ₂	1:1	2	40	300	$Pd_{0.66}In_{0.34}$
In(acac) ₃					
Pd(acac) ₂	1:2	2	40	300	$Pd_{0.49}In_{0.51}$
In(acac) ₃					
In(acac)₃		2	40	300	ln1
	Metal Precursors Pd(acac) ₂ Pd(acac) ₂ Ga(acac) ₃ Pd(acac) ₂ Ga(acac) ₃ Pd(acac) ₂ Ga(acac) ₃ Pd(acac) ₂ In(acac) ₃ Pd(acac) ₂ In(acac) ₃ Pd(acac) ₂ In(acac) ₃ Pd(acac) ₂ In(acac) ₃	MetalPd:MPrecursors(precursors molar ratio)Pd(acac)2	Metal Pd:M TO Precursors (precursors P molar ratio) (mL) Pd(acac)2 z) Pd(acac)2 2:1 2 Pd(acac)3 2 2 Pd(acac)2 1:1 2 Ga(acac)3 1 2 Pd(acac)2 1:2 2 Ga(acac)3 2 2 Pd(acac)2 1:2 2 Ga(acac)3 2 2 Pd(acac)2 1:2 2 Ga(acac)3 2 2 Pd(acac)2 1:1 2 Ga(acac)3 2 2 Pd(acac)2 1:1 2 In(acac)3 2 2 Pd(acac)2 1:1 2 In(acac)3 2 2 In(acac)3 2 2 In(acac)3 2 2 In(acac)3 3 3 In(acac)3 3 3 </td <td>Metal Pd:M TO OLA Precursors (precursors P M molar ratio) (mL (mL) molar ratio) (mL 2000 Pd(acac)2 2:1 2000 400 Ga(acac)3 2 400 3000 Pd(acac)2 2:1 2000 400 Ga(acac)3 1:1 2 400 Ga(acac)3 1:1 2 400 Ga(acac)3 1:2 2 400 Ga(acac)3 2 400 3000 Ga(acac)3 2 400 3000 Ga(acac)3 2 400 3000 Ga(acac)3 2 400 3000 Pd(acac)2 2:1 2 4000 In(acac)3 2 4000 3000 Pd(acac)2 1:1 2 4000 In(acac)3 2 40000 3000 In(acac)3 2 400000 3000</td> <td>Metal Pd:M TO OLA Temperatur Precursors (precursors) P M e (°C) molar ratio) (mL (mL) (mL) Pd(acac)2 . 2 40 200 Pd(acac)2 2:1 2 40 300 Ga(acac)3 Pd(acac)2 1:1 2 40 300 Ga(acac)3 Pd(acac)2 1:1 2 40 300 Ga(acac)3 Pd(acac)2 1:2 2 40 300 Ga(acac)3 Pd(acac)2 1:2 2 40 300 In(acac)3 Pd(acac)2 1:1 2 40 300 In(acac)3 Pd(acaco)2</td>	Metal Pd:M TO OLA Precursors (precursors P M molar ratio) (mL (mL) molar ratio) (mL 2000 Pd(acac)2 2:1 2000 400 Ga(acac)3 2 400 3000 Pd(acac)2 2:1 2000 400 Ga(acac)3 1:1 2 400 Ga(acac)3 1:1 2 400 Ga(acac)3 1:2 2 400 Ga(acac)3 2 400 3000 Ga(acac)3 2 400 3000 Ga(acac)3 2 400 3000 Ga(acac)3 2 400 3000 Pd(acac)2 2:1 2 4000 In(acac)3 2 4000 3000 Pd(acac)2 1:1 2 4000 In(acac)3 2 40000 3000 In(acac)3 2 400000 3000	Metal Pd:M TO OLA Temperatur Precursors (precursors) P M e (°C) molar ratio) (mL (mL) (mL) Pd(acac)2 . 2 40 200 Pd(acac)2 2:1 2 40 300 Ga(acac)3 Pd(acac)2 1:1 2 40 300 Ga(acac)3 Pd(acac)2 1:1 2 40 300 Ga(acac)3 Pd(acac)2 1:2 2 40 300 Ga(acac)3 Pd(acac)2 1:2 2 40 300 In(acac)3 Pd(acac)2 1:1 2 40 300 In(acac)3 Pd(acaco)2

Table S.1. Reaction conditions used in this work for the synthesis of nanoparticles and molar elemental compositions obtained by ICP-OES analysis.

Table S.2. Monometallic Pd, Ga, In and bimetallic Pd-Ga and Pd-In supported catalysts' elemental composition obtained by ICP-OES analysis.

Catalysts	Pd loading	M loading	PdM loading	Composition
	(wt.%)	(wt. %)	(wt. %)	(molar ratio)
Pd/TiO ₂	5.6	-	5.6	Pd1
Pd2Ga/TiO ₂	2.64	0.56	3.2	$Pd_{0.76}Ga_{0.24}$
Pd1Ga/TiO ₂	3.93	1.31	5.2	$Pd_{0.66}Ga_{0.34}$
Pd0.5Ga/TiO ₂	2.41	1.67	4.1	$Pd_{0.49}Ga_{0.51}$
Ga/TiO ₂	-	4.1	4.1	Ga1
Pd2In/TiO ₂	3.88	1.13	5.0	$Pd_{0.78}In_{0.22}$
Pd1In/TiO ₂	2.85	1.14	4.0	Pd _{0.73} In _{0.27}

Pd0.5In/TiO ₂	2.35	1.15	3.5	$Pd_{0.69}In_{0.31}$
In/TiO ₂	-	4.04	4.04	ln1

Table S.3. Particle size of as-prepared, unsupported and supported Pd-Ga and Pd-In nanoparticles as a function of Pd : M (M= Ga,In) ratio determined by TEM. Catalyst Particle size / nm (Standard deviation)

Catalyst		
	Unsupported	Supported Nanoparticles
	Nanoparticles	
Pd/TiO ₂	4.8 (0.5)	4.1 (1.6)
Pd2Ga/TiO ₂	3.5 (0.4)	3.6 (1.9)
Pd1Ga/TiO ₂	4.4 (0.7)	4.3 (1.0)
Pd0.5Ga/TiO ₂	5.4 (0.7)	4.9 (1.1)
Pd2In/TiO ₂	5.7 (0.8)	3.6 (1.7)
Pd1In/TiO ₂	5.2 (0.9)	4.4 (1.5)
Pd0.5In/TiO ₂	2.9 (0.5)	2.3 (0.9)

Table S.4. Results of EXAFS analysis for Pd, Pd-Ga and Pd-In supported catalysts.

Supported catalysts	d Pd-O (Å)	CN (O)	σ ² (O) (10 ⁻³ Å ²)	d Pd-M (Å)	CN (M)	σ² (M) (10 ⁻³ Ų)	d Pd-Pd (Å)	CN (Pd)	σ² (Pd) (10 ⁻³ Ų)	δE₀ (eV)	ρ (%)
Pd foil	-	-	-	-	-	-	2.737±0.002	12*	4.6±0.4	- 3.1±0.4	0.5
Pd/TiO ₂	1.97±0.01	3.4±1.0	8.0±4.6	-	-	-	2.737±0.01	3.3±1.1	6.8±1.8	- 1.9±2.9	2.9
Pd2Ga/TiO ₂	1.95±0.03	0.9±0.4	5.0	2.56±0.03	1.0	3.6±3.0	2.686±0.03	8.1±2.3	15.0±5.0	- 8.7±2.2	2.0
Pd1Ga/TiO ₂	1.98±0.02	1.5±0.3	3.0	-	-	-	2.736±0.018	5.3±1.1	8.5±1.7	- 2.6±1.6	2.6
Pd0.5Ga/TiO ₂	1.95±0.03	1.0±0.3	9.6±1.1	-	-	-	2.733±0.007	5.7±0.7	9.6±1.1	- 5.0±0.9	1.6
Pd2In/TiO ₂	-	-	-	_**	_**	_**	2.740±0.01	8.9±1.7	10.7±1.4	- 3.7±1.6	1.6
Pd1In/TiO ₂	1.99±0.02	2.5±0.7	5.5±3.5	_**	_**	_**	2.748±0.01	4.1±1.0	7.8±1.5	- 0.9±1.8	1.6
Pd0.5In/TiO ₂	2.01±0.01	3.0±0.6	6.9±2.7	_**	_**	_**	2.761±0.01	3.0±0.8	8.4±1.8	1.4±1.6	1.4

*Amplitude reduction factor determined as 0.78(CAT-ACT) and 0.88 (P64) **In has a similar scattering factor to Pd and therefore is indistinguishable from Pd during EXAFS analysis

	U				
Catalyst	H ₂	H_2O_2	Productivity /	H_2O_2	Degradation
	Conversion /	Selectivity	mol _{H2O2} kg _{cat} -	Concentratio	/
	%	/%	¹ h ⁻¹	n / wt.%	mol _{H2O2} kg _{cat} -
			400	0.04	11
	57	24	103	0.21	1056
Pd2Ga/TiO ₂	49	30	111	0.22	750
Pd1Ga/TiO₂	-	-	104	0.21	735
Pd0.5Ga/TiO	-	-	86	0.17	436
2					
Ga/TiO ₂	-	-	0	0	13
Pd2In/TiO₂	40	34	98	0.20	786
Pd1In/TiO ₂	-	-	93	0.19	636
Pd0.5In/TiO ₂	-	-	66	0.16	520
In/TiO			0	0	5

Table S.5. Catalytic activity of TiO_2 supported Pd-Ga and Pd-In catalysts towards the direct synthesis and subsequent degradation of H_2O_2

Reference	Catalyst	Reactor	Temp	Pressure	Time	Solvent	Promotor	H_2O_2
		Туре	/	/ bar	/ h			Selectivity
								/ %
This work	Pd/TiO ₂	Batch	2	40	0.5	H ₂ O/MeOH	-	24
	Pd2Ga/TiO ₂	Batch	2	40	0.5	H ₂ O/MeOH	-	30
	Pd2In/TiO ₂	Batch	2	40	0.5	H ₂ O/MeOH	-	34
Freakley ¹	1%Pd-	Batch	2	40	0.5	H ₂ O/MeOH	-	95
	4%Sn/SiO ₂							
	3%Pd-	Batch	2	40	0.5	H ₂ O/MeOH	-	96
	2%Sn/TiO ₂							
Ding ²	3%Pd/TiO ₂	Semi-	10	1	0.25	$EtOH+H_2SO_4$	0.12M	54
		batch					H_2SO_4	
	$Pd_{50}Sb/TiO_2$	Semi-	10	1	0.25	$EtOH+H_2SO_4$	0.12M	73
		batch					H_2SO_4	
Tian ³	3%Pd/TiO ₂	Semi-	10	1	0.17	EtOH+H ₂ SO ₄	0.12M	65

Table S.6. Comparison of the catalytic selectivity of bi-metallic Pd catalysts towards H_2O_2 as a function of secondary metal.

	batch					H_2SO_4	
Pd ₁₀₀ Te ₁ /TiO ₂	Semi-	10	1	0.17	EtOH+H ₂ SO ₄	0.12M	100
	batch					H_2SO_4	

Table S.7. Leaching of Pd, In and Ga from supported catalysts in solvent after H_2O_2 synthesis reaction as determined by ICP-MS.

Catalyst	Pd / (wt. %)	Ga (wt. %)	In (wt. %)
Pd/TiO ₂	0.02	-	-
Pd2Ga/TiO ₂	0.2	0.4	-
Pd1Ga/TiO ₂	0.02	0.1	-
Pd0.5Ga/TiO ₂	0.1	0.1	-
Pd2In/TiO ₂	0.1	-	0.06
Pd1In/TiO ₂	0.01	-	0.001
Pd0.5In/TiO ₂	0.1	-	0.002

 $\begin{array}{l} \textbf{H_2O_2 direct synthesis reaction conditions:} \\ \textbf{Co}_2 (420 \text{ psi}), 25\% \text{ O}_2 / \text{ CO}_2 (160 \text{ psi}), 0.5 \text{ h}, 2 \ ^\circ\text{C}, 1200 \text{ rpm} \end{array} \\ \end{array}$

Figure S. 1. XRD patterns of TiO_2 supported Pd, Ga, In, Pd-Ga and Pd-In catalysts.

Figure S.2. A) STEM-HAADF image of $Pd2Ga/TiO_2$ and corresponding EDX spectra in B) area 1, C) area 2, and D) area 3. E) STEM-HAADF image of $Pd2Ga/TiO_2$ and corresponding EDX spectrum for a single Pd2Ga nanoparticle in F) point 1. In general, the overall EDX signal intensity of the Pd2Ga nanoparticles is very low (i.e. low Pd signal intensity while Ga could not be detected by EDX

analysis). (EDX spectra are enlarged for the 1.9-25 eV energy range; Cu is due to supporting TEM grid; Fe/Co refer to the pole shoe of the TEM).

В

Figure S.3. A) STEM-HAADF image of PdGa2/TiO₂ and corresponding EDX spectrum in B) point 1. C) STEM-HAADF image of PdGa2/TiO₂ and corresponding EDX spectrum in D) point 1. E) STEM-HAADF image of PdGa2/s-TiO₂ and corresponding EDX spectrum in F) point 1 and G) point 2 (signals of very low intensity observed at 2.2 eV and 2.5 eV refer to P (P(octyl)₃ - nanoparticle ligands) and S (s-TiO₂), respectively). For PdGa2 nanoparticles, a Ga signal of low intensity is detected while there seems to be no Ga signal observed in the absence of Pd. However, it has to be noted that the distribution of some Ga over the support may not be completely excluded (EDX spectra are enlarged for the 1.9-25 eV energy range; Cu is due to supporting TEM grid; Fe/Co refers to the pole shoe of the TEM).

Figure S.4. EDX spectrum of PdGa2/TiO₂ (Figure S.3) in point 1 (B) above) indicating the peak positions.

Figure S.5. A) STEM-HAADF image of Pd2In/TiO₂ and corresponding EDX spectra (enlarged for the 1.9-25 eV energy range) in B) area 1, C) area 2 and D) area 3. E) STEM-HAADF image of Pd2In/TiO₂ and corresponding EDX spectrum in F) point 1. Overall the EDX signal of the Pd2In nanoparticles is of very low intensity (i.e. low Pd signal intensity; In is not detected by EDX analysis). (EDX spectra are enlarged for the 1.9-25 eV energy range; Cu is due to supporting TEM grid; Fe/Co refers to the pole shoe of the TEM).

Figure S.6. EDX spectra of $(Pd2In/s-TiO_2 \text{ in Figure S.5 in area 1 (G), area 2 (H), area 3 (I) and point 1(F) above) indicating the peak positions.$

Figure S.7. A) STEM-HAADF image of PdIn2/TiO₂ and corresponding EDX spectra in B) area 1, C) area 2 and D) area 3. E) STEM-HAADF image of Pd2In/TiO₂ and corresponding EDX spectrum in F) point 1. Overall the EDX signal of the PdIn2 nanoparticles is of very low intensity (i.e. low Pd signal intensity; In is not detected by EDX analysis). (EDX spectra are enlarged for the 1.9-25 eV energy range; Cu is due to supporting TEM grid; Fe/Co refers to the pole shoe of the TEM).

Figure S.8. EDX spectra of PdIn2/TiO₂ (Figure S.7 in area 1 (B) and point 1(C) above) indicating the peak positions.

Figure S.9. A) k^2 -weighted and B) Fourier-transformed k^2 -weighted Pd-K edge EXAFS spectra (uncorrected for the phase shift) TiO₂ supported Pd, Ga, In, Pd-Ga and Pd-In catalysts as well as Pd (multiplied by 1/2) and PdO references.

Figure S.10. XPS spectra of Pd 3d region for A) PdGa/TiO₂ and B) PdIn/TiO₂ catalysts with varying Pd: M ratio, with the corresponding deconvoluted spectra for the Pd region seen in C) for the PdGa/TiO₂ and D) for the PdIn/TiO₂ catalysts. Figure E) show XPS spectra for In 3d and Ga 2p regions for the corresponding PdM/TiO₂ catalysts.

For the monometallic Pd/TiO₂ catalyst, the Pd($3d_{5/2}$) binding energy is found to be 334.9 eV, consistent with metallic Pd⁴, together with some Pd(II) around 337 eV. With the addition of Ga in Pd:Ga ratios of 2:1, 1:1 and 1:2 (Pd2Ga, Pd1Ga and Pd0.5Ga respectively), we note an initially higher binding energy for the metallic Pd peak, which systematically decreases with increasing Ga 335.1 eV to 334.7 eV. Interestingly, the Pd1Ga samples have a total of three Pd species, with binding energies of 334.8, 336.0 and 337.6 eV and attributed to Pd(0), PdGa intermetallic species and Pd(II) respectively.² The evidence, at least from XPS, for intermetallic formation in the Pd2Ga and Pd0.5Ga samples, is negligible.

For all samples, the $Ga(2p_{3/2})$ binding energy is also found to vary upwards as the amount of Ga increases (1118.1 up to 1118.5 eV), the binding energy of which is consistent with Ga oxides and a consequence of contact of the samples with air.³

In respect of the PdIn catalysts, all samples exhibit an $In(3d_{5/2})$ binding energy of 445 eV, *ca.* 1 eV higher than the energy characteristic of indium oxide^{4, 5} and may be attributed to the surface oxide of a PdIn intermetallic species, of which there is evidence in the Pd(3d) spectra (see Figure S6 above), and together with prolonged X-ray exposure there is evidence of reduction of this surface species to reveal a smaller shoulder at 443 eV, consistent with intermetallic In phases.^{5, 6}

References

- S.J. Freakley, Q. He, J. H. Harrhy, L. Lu, D. A. Crole, D. J. Morgan, E. N. Ntainjua, J. K. Edwards, A. F. Carley, A. Y. Borisevich, C. J. Kiely and G. J. Hutchings, *Science*, 2016, **351**, 965-968.
- D. Ding, X. Xu, P. Tian, X. Liu, J. Xu and Y. Han, *Chin. J. Catal.* 2018, **39**, 673–681.
- 3. P. Tian, X. Xu, C. Ao, D. Ding, W. Li, R. Si, W. Tu, J. Xu and Y. Han, *ChemSusChem* 2017, **10**, 3342–3346.
- E. H. Voogt, A. J. M. Mens, O. L. J. Gijzeman and J. W. Geus, *Surf. Sci.*, 1996, 350, 21-31.
- K. Kovnir, M. Armbrüster, D. Teschner, T. Venkov, L. Szentmiklósi, F. C. Jentoft,
 A. Knop-Gericke, Y. Grin and R. Schlögl, *Surf. Sci.*, 2009, **603**, 1784-1792.
- J. Osswald, R. Giedigkeit, R. E. Jentoft, M. Armbrüster, F. Girgsdies, K. Kovnir, T. Ressler, Y. Grin and R. Schlögl, *J. Catal.*, 2008, **258**, 210-218.
- C. Rameshan, H. Lorenz, L. Mayr, S. Penner, D. Zemlyanov, R. Arrigo, M. Haevecker, R. Blume, A. Knop-Gericke and R. Schlögl, *J.Catal.*, 2012, 295, 186-194.
- 8. A. Naumkin, A. Kraut-Vass, S. Gaarenstroom and C. Powell, *National Institute of Standards and Technology: Gaithersburg*, 2012.
- A. García-Trenco, A. Regoutz, E. R. White, D. J. Payne, M. S. Shaffer and C. K. Williams, *Appl. Catal., B*, 2018, **220**, 9-18.