Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2020

Supporting Information

Black phosphorus quantum dots facilitate carrier separation for enhancing hydrogen production over hierarchical $Cu_7S_4/ZnIn_2S_4$ composites

Quan Zhang, Juhua Zhang, Lu Zhang, Fengli Yang, Lingfeng Li, Wei-Lin Dai*

Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, P. R. China

*Corresponding author: Prof. & Dr. Wei-Lin Dai

Fax: +86 3124 2978

Tel: +86 3124 9122

E-mail: wldai@fudan.edu.cn

No.	Listing of items	Pages
1	Fig. S1. FESEM images of (A) Cu ₂ O and (B) ZnIn ₂ S ₄ samples.	3
2	Fig. S2. EDS mapping profiles of 20% Cu ₇ S ₄ /ZnIn ₂ S ₄ samples.	4
3	Fig. S3. EDS mapping profiles of 30% $Cu_7S_4/ZnIn_2S_4$ samples.	5
4	Fig. S4 TEM images of the deposition of BPQDs on the surface of $ZnIn_2S_4$.	6
5	Fig. S5. Quantitative results of BPQDs@Cu ₇ S ₄ /ZnIn ₂ S ₄ through random selection of 6 points by tableting method.	7-8
6	Fig. S6. XRD patterns of Cu_2O , Cu_7S_4 samples.	9
7	Fig. S7. XRD patterns of different composition contents of $Cu_7S_4/ZnIn_2S_4$ samples.	10
8	Fig. S8. UV-vis/DRS spectra of (a) Cu_7S_4 , $ZnIn_2S_4$ and 1% Cu_7S_4 / $ZnIn_2S_4$ and (b) optical band gaps of $ZnIn_2S_4$ determined by UV-Vis/DRS spectroscopy.	11
9	Fig. S9. Appearance color contrast of (A) Cu_7S_4 , (B) $ZnIn_2S_4$, (C) 1% Cu_7S_4 / ZnIn ₂ S ₄ , (D) 5% Cu_7S_4 / ZnIn ₂ S ₄ , (E) 10% Cu_7S_4 / ZnIn ₂ S ₄ , (F) 20% Cu_7S_4 / ZnIn ₂ S ₄ , (G) 30% Cu_7S_4 / ZnIn ₂ S ₄ and (H) BPQDs@10% Cu_7S_4 / ZnIn ₂ S ₄ composites.	12
10	Fig. S10. Full-spectrum XPS scan of (a) Cu_2O , (b) Cu_7S_4 , (c) $ZnIn_2S_4$, (d) 10% $Cu_7S_4/ZnIn_2S_4$ and (e) BPQDs@10% $Cu_7S_4/ZnIn_2S_4$ samples.	13-15
11	Fig. S11. In high-resolution XPS spectra of $ZnIn_2S_4$, 10% $Cu_7S_4/ZnIn_2S_4$ and BPQDs@10% $Cu_7S_4/ZnIn_2S_4$ samples.	16
12	Fig. S12. Zn high-resolution XPS spectra of $ZnIn_2S_4$, 10% $Cu_7S_4/ZnIn_2S_4$ and BPQDs@10% $Cu_7S_4/ZnIn_2S_4$ samples.	17
13	Fig. S13. P 2p high-resolution XPS spectra of BPQDs@10% Cu ₇ S ₄ /ZnIn ₂ S ₄ samples.	18
14	Table S1-S5. High-resolution XPS of Cu 2p, S 2p, In 3d, Zn 2p, P 2p.	19-20
15	Fig. S14. Agglomerated phenomenon of $30\% \text{ Cu}_7\text{S}_4/\text{ZnIn}_2\text{S}_4$ samples.	21
16	Fig. S15. Optical band gaps of pristine $ZnIn_2S_4$ determined by Kubelka-Munk plot.	22
17	Table S6.Comparison of photocatalytic H_2 generation performanceunder visible light.	23
18	Notes and references	24

Fig. S1. FESEM images of (A) Cu_2O , (B) $ZnIn_2S_4$ and TEM images of (C) Cu_7S_4 ,

(D) enlarged Cu₇S₄ samples.

EDS Layered Image 1

2.5µm

Electron Image 1

Cu Kα1

2.5µm

2.5µm

2.5µm

Combined map

Indium

Oxygen

Zinc

Copper

Fig. S3. EDS mapping profiles of $30\%Cu_7S_4/ZnIn_2S_4$ samples.

Fig. S4. TEM images of the deposition of BPQDs on the surface of $ZnIn_2S_4$.

FOV: 269 $\mu m,$ Mode: 15kV - Point, Detector: BSD Full, Time: AUG 27 2019 22:11

Fig. S5. Quantitative results of BPQDs@Cu₇S₄/ZnIn₂S₄ through random selection of 6 points by tableting method.

Fig. S6. XRD patterns of Cu_2O , Cu_7S_4 samples.

Fig. S7. XRD patterns of different contents of $Cu_7S_4/ZnIn_2S_4$ samples.

Fig. S8. Appearance color contrast of (A) Cu₇S₄, (B) ZnIn₂S₄, (C) 1%Cu₇S₄/ ZnIn₂S₄, (D) 5%Cu₇S₄/ZnIn₂S₄, (E) 10%Cu₇S₄/ZnIn₂S₄, (F) 20%Cu₇S₄/ZnIn₂S₄, (G) 30%Cu₇S₄/ZnIn₂S₄ and (H) BPQDs@10%Cu₇S₄/ZnIn₂S₄ composites.

Fig. S9. UV-vis/DRS spectra of Cu₇S₄, ZnIn₂S₄ and 1%Cu₇S₄/ZnIn₂S₄.

Fig. S10. Full-spectrum XPS scan of Cu_2O , Cu_7S_4 , $ZnIn_2S_4$, $10\%Cu_7S_4/ZnIn_2S_4$ and BPQDs@ $10\%Cu_7S_4/ZnIn_2S_4$ samples.

Fig. S11. In high-resolution XPS spectra of $ZnIn_2S_4$, $10\%Cu_7S_4/ZnIn_2S_4$ and BPQDs@10%Cu₇S₄/ZnIn₂S₄ samples.

Fig. S12. Zn high-resolution XPS spectra of $ZnIn_2S_4$, $10\%Cu_7S_4/ZnIn_2S_4$ and BPQDs@10%Cu₇S₄/ZnIn₂S₄ samples.

Fig. S13. P 2p high-resolution XPS spectra of BPQDs@10%Cu₇S₄/ZnIn₂S₄ samples.

Elemental orbit	Samples	Position (eV)	Species	Contents (%)
	Cu ₂ O	931.6	Cu+ 2p3/2	42.5
	Cu ₇ S ₄	931.6	Cu+ 2p3/2	24.1
Cu 2p	10% Cu ₇ S ₄ /ZnIn ₂ S ₄	931.6	Cu+ 2p3/2	/
	BPQDs@10%	022.0	Cut 2p2/2	1
	Cu ₇ S ₄ /ZnIn ₂ S ₄	952.0	Cu 2p3/2	/

 Table S1 High-resolution XPS data of Cu 2p.

Table S2	High-reso	lution XPS	data of S	2р.
----------	-----------	------------	-----------	-----

Elemental orbit	Samples	Position (eV)	Species	Contents (%)
	Cu ₇ S ₄	161.6	S 2p3/2	39.6
	ZnIn ₂ S ₄	162.0	S 2p3/2	66.2
S 2p	10% Cu ₇ S ₄ /ZnIn ₂ S ₄	162.0	S 2p3/2	85.3
	BPQDs@10%	161.8	s 2n2/2	59.0
	Cu ₇ S ₄ /ZnIn ₂ S ₄	101.0	5 2p3/2	

Elemental orbit	Samples	Position (eV)	Species
	ZnIn ₂ S ₄	444.9	In 3d5/2
		452.5	In 3d3/2
	10% Cu 6 /7plp 6	444.8	In 3d5/2
III 30	$10\% Cu_7 3_4 / 21111_2 3_4$	452.4	In 3d3/2
	BPQDs@10% Cu ₇ S ₄ /ZnIn ₂ S ₄	444.9	In 3d5/2
		452.5	In 3d3/2

 Table S3 High-resolution XPS data of In 3d.

Table S4 High-resolution XPS data of Zn 2p.

Elemental orbit	Samples	Position (eV)	Species
	Zala C	1021.5	Zn 2p3/2
	200254	1044.5	Zn 2p1/2
7n)n	$2p 10\% Cu_7S_4/ZnIn_2S_4 $	1021.4	Zn 2p3/2
211 ZP		1044.4	Zn 2p1/2
	BPQDs@10%	1021.4	Zn 2p3/2
	$Cu_7S_4/ZnIn_2S_4$	1044.4	Zn 2p1/2

Table S5 High-resolution XPS data of P 2p.

Elemental orbit	Samples	Position (eV)	Species	Contents (%)
	BPQDs@10%	130.6	P 2p3/2	35.5
Р 2р		131.5	P 2p1/2	17.7
	Cu ₇ 54/21111254	134.1	P-O-P	46.8

Fig. S14. Agglomerated phenomenon of $30\% Cu_7S_4/ZnIn_2S_4$ samples.

Fig. S15. Optical band gaps of pristine $ZnIn_2S_4$ determined by Kubelka-Munk

plot.

Cotolyst	Sacrificial agent H ₂ evolution rate		Pof	
Catalyst	Cocatalyst	(umol/g/h)	IXUI.	
BPQDs@Cu ₇ S ₄ /ZnIn ₂ S ₄	Na ₂ S, Na ₂ SO ₃	885	This work	
$MoS_2/ZnIn_2S_4$	Na ₂ S, Na ₂ SO ₃	120	[1]	
Co/CQDs/ZnIn ₂ S ₄	TEOA	1760	[2]	
RGO/ZnIn ₂ S ₄	lactic acid	817	[3]	
$MoS_2/ZnIn_2S_4$	Na ₂ S, Na ₂ SO ₃	3060	[4]	
Graphene/ZnIn ₂ S ₄	Na ₂ S, Na ₂ SO ₃	40.9	[5]	
MoS ₂ /CQDs/ZnIn ₂ S ₄	TEOA	3000	[6]	
$WS_2/ZnIn_2S_4$	Na ₂ S, Na ₂ SO ₃	199	[7]	
NiS/CQDs/ZnIn ₂ S ₄	TEOA	568	[8]	
	Na ₂ S, Na ₂ SO ₃	040.0	[0]	
$\operatorname{Agin}_5S_8/\operatorname{Znin}_2S_4$	2% Pt	949.9	[9]	
	TEOA	1470	[10]	
$\ln(OH)_3/2\pi\ln_2\delta_4$	0.5% Pt	14/0		

Table S6 Comparison of photocatalytic H_2 generation performance with reported literatures.

Notes and references

- 1 T. Huang, W. Chen, T.-Y. Liu, Q.-L. Hao and X.-H. Liu, *Powder Technol.* 2017, **315**, 157-162.
- 2 Y. Ding, Y. Gao and Z. Li, *Appl. Surf. Sci.* 2018, **462**, 255-262.
- 3 L. Ye, J. Fu, Z. Xu, R. Yuan and Z. Li, ACS Appl. Mater. Interfaces 2014, 6, 3483-3490.
- 4 L. Wei, Y. Chen, Y. Lin, H. Wu, R. Yuan and Z. Li, *Appl. Catal., B* 2014, **144**, 521–527.
- 5 R. Yang, J. He, K. Song, Y. Fan, F. Tian and R. Zhu, *Chem. Phys. Lett.* 2020, **738**, 136863.
- 6 B. Wang, Z. Deng, X. Fu and Z. Li, J. Mater. Chem. A 2018, 6, 19735-19742.
- 7 J. Zhou, D. Chen, L. Bai, L. Qin, X. Sun and Y. Huang, Int. J. Hydrogen Energy 2018, 43, 18261-18269.
- 8 B. Wang, Y. Ding, Z. Deng and Z. Li, *Chinese J. Catal.* 2019, **40**, 335-342.
- 9 Z. Guan, Z. Xu, Q. Li, P. Wang, G. Li and J. Yang, *Appl. Catal., B* 2018, **227**, 512-518.
- 10 Y. Li, Y. Hou, Q. Fu, S. Peng and Y. H. Hu, *Appl. Catal., B* 2017, **206**, 726-733.