Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2020

## **Supporting Information**

Lean NO<sub>x</sub> Reduction by CO at Low Temperature over Bimetallic IrRu/Al<sub>2</sub>O<sub>3</sub> Catalysts with Different Ir:Ru Ratios

Ji Hwan Song<sup>a</sup>, Dong Chan Park<sup>a</sup>, Young-Woo You<sup>b</sup>, Tae Sun Chang<sup>b</sup>, Iljeong Heo<sup>b</sup>, Do Heui Kim<sup>\*,a</sup>

<sup>a</sup>School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea

<sup>b</sup>Center for Environment and Sustainable Resources, Carbon Resources Institute, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea

\*Corresponding author

(Tel: +82-2-880-1633, Fax: +82-2-888-7295, E-mail: dohkim@snu.ac.kr)



Fig. S1. Concentrations of  $N_2$  formation over IrRu catalysts, calculated indirectly from  $NO_x$  conversion and  $N_2O$  concentration data in Figure 1. Ir0Ru4 sample is excluded from calculation due to its inert activity in  $NO_x$  reduction. It was assumed that only  $N_2$  and  $N_2O$  is formed as a result of  $NO_x$  reduction, as  $NH_3$  formation was not detected.



**Fig. S2.** The effect of CO/NO ratio within the inlet feed on the (a) NO<sub>x</sub> conversion, and (b) CO conversion of Ir1Ru3 catalyst. CO concentration within the inlet feed was fixed to 7000 ppm, whereas the NO concentration was varied from 50 ppm ([CO]/[NO] = 140), to 100 ppm ([CO]/[NO] = 70) and 200 ppm ([CO]/[NO] = 35). Other reaction and pretreatment conditions were maintained constant as described in the experimental section.



Fig. S3. Long-run tests over Ir1Ru3 catalyst at 200 °C, taken for 900 minutes (15 hours). Reaction and pretreatment conditions were maintained constant as described in the experimental section (Inlet gas composition: 50 ppm of NO, 7000 ppm of CO, 5 % of  $O_2$  balanced with  $N_2$ ).



Fig. S4. Catalytic activity of the gamma-alumina support, without any impregnated iridium or ruthenium species. Reaction and pretreatment conditions were maintained constant as described in the experimental section (Inlet gas composition: 50 ppm of NO, 7000 ppm of CO, 5 % of  $O_2$  balanced with  $N_2$ ).



**Fig. S5.** (a) Nitrogen adsorption-desorption isotherm, (b) XRD analyses, and (c) TPR profile of the gamma-alumina support. Surface area, pore volume, and average pore diameter calculated from BET methods are also displayed within Figure S5(a). The scale of y-axis in Figure S5(b) and (c) are normalized with regard to those shown in Figure 2 and 3, respectively.



Fig. S6. Nitrogen adsorption-desorption isotherms of calcined IrRu catalysts



Fig. S7. MSD signals corresponding to  $H_2$  (m/z value of 2) and  $H_2O$  (m/z value of 18) collected during  $H_2$ -TPD analyses over SBA200 alumina support. The y-axis are not normalized.



**Fig. S8.** An exemplary EDX mapping of a large-sized agglomerate (marked with a red arrow) observed on the surface of reduced bimetallic IrRu samples.



**Fig. S9.** TEM image of bimetallic IrRu sample after calcination (under air, at 500 °C for 4 h). The presence of agglomerates are marked with red arrows.



Fig. S10. NO concentration (blue line),  $NO_2$  concentration (red line), and  $NO_x$  conversion (black line) during standard  $NO_x$  reduction reaction over reduced Ir0Ru4 catalyst. Right-side of the y-axis indicate  $NO/NO_2$  concentrations, and left-side of the y-axis indicate  $NO_x$  conversion.