Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2020

Supporting information

Quantitative determination of the Cu species, acid sites and NH₃-SCR mechanism on Cu-SSZ-13 and H-SSZ-13 at low temperatures

Kuo Liu, ab Zidi Yan, ad Wenpo Shan, *c Yulong Shan ad, Xiaoyan Shi ad, Hong He, *acd

^a State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences,

Beijing 100085, China

^b Editorial Office of Journal of Environmental Sciences, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China

 ^c Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
 ^d University of Chinese Academy of Sciences, Beijing 100049, China

*Corresponding authors. E-mails: wpshan@iue.ac.cn (W. Shan), honghe@rcees.ac.cn (H. He); Fax: +86 10 62849123; Tel: +86 10 62849123

Figure S1 In situ DRIFT spectra of species on Cu-SSZ-13 and H-SSZ-13 after NO adsorption.

Figure S2 NO₂ formation during NO oxidation on Cu-SSZ-13 and H-SSZ-13. Reaction conditions: 500 ppm NO and 5% O₂, with N₂ balance; 500 mL/min gas flow

rate.

Figure S3 (a) Adsorption of NO₂ on Cu-SSZ-13 pretreated by NH₃ at 30°C and (b) TPSR in NO/N₂ of Cu-SSZ-13 pretreated by 500 ppm NH₃ and then 500 ppm NO₂ at 30° C.

Following experiment was conducted to study if the reaction mechanism changes with the change of the adsorption: NH_3 was adsorbed on Cu-SSZ-13 firstly, and then NO_2 was introduced into the reactor. Afterwards, TPSR in NO/N_2 was conducted, and the results are shown in **Figure S3**.

The amount of NH₃ adsorbed on fresh Cu-SSZ-13 was 3829 μ mol g⁻¹ (**Figure 6a**), and the subsequent NO₂ adsorption resulted in 1405 μ mol g⁻¹ NO₂ consumption and 380 μ mol g⁻¹ NO evolution. Thus, the nitrate adsorbed on Cu-SSZ-13 was 1405 – 380 = 1025 μ mol g⁻¹. Since the amounts of weakly adsorbed NH₃ and nitrates were 721 and 456 μ mol g⁻¹, respectively, the remaining amounts of NH₃ and nitrates on Cu-SSZ-13 could be calculated to be 3829 – 721 = 3108 μ mol g⁻¹ and 1025 – 456 = 569 μ mol g⁻¹, respectively. During TPSR, the amounts of NO consumption, NO₂, N₂O and NH₃ evolution were 1528, 493, 47 and 1522 μ mol g⁻¹, respectively. Therefore, it can be concluded that 3108 – 1522 = 1586 μ mol g⁻¹ NH₃ and 569 μ mol g⁻¹ nitrates could reacted with 1528 μ mol g⁻¹ NO at the ratios of NO/NH₃ 1/1 (1035/1035), NO/NH₄NO₃/(NO₂ emission) 1/1/1 (493/493/493), and NH₄NO₃/(N₂O emission) 1/1 (47/47), and following reactions took place:

$$2NO + 2NH_{3}\text{-}adsorbed + (Z^{-}Cu^{2+})_{2}\text{-}O_{2} \rightarrow 2N_{2} + 3H_{2}O + Z^{-}Cu^{2+}\text{-}O\text{-}Cu^{2+}Z^{-}(27)$$

$$2NO + 2NH_{3}\text{-}adsorbed + Z^{-}Cu^{2+}\text{-}O\text{-}Cu^{2+}Z^{-} \rightarrow 2N_{2} + 3H_{2}O + 2Z^{-}Cu^{+} \quad (28)$$

$$4NO + 4NH_{3}\text{-}adsorbed + Z^{-}Cu^{2+}O_{2}\bullet \rightarrow 4N_{2} + 6H_{2}O + Z^{-}Cu^{+} \quad (29)$$

$$Z-ONH_4NO_3-Z+NO \rightarrow N_2+NO_2+2H_2O+Z-O+Z$$
(24)

$$Z-ONH_4NO_3-Z \rightarrow N_2O + 2H_2O + Z-O + Z$$
(23)

The mechanism was the same as that concluded from **Figure 10a**, i.e., the results of TPSR of Cu-SSZ-13 in NO pretreated by NO₂ and then NH₃, indicating that the reaction mechanism was not affected by the adsorption order. It should be noted that more NH₃ adsorbed on the fresh Cu-SSZ-13 catalyst than on NO₂-pretreated Cu-SSZ-13 (**Figure S3a**), and thus, the amount of NH₃ desorption in **Figure S3b** was higher than that in **Figure 10a**. The amount of NO₂ adsorbed on NH₃-pretreated Cu-SSZ-13 was smaller than that on fresh Cu-SSZ-13 (**Figure 6a**), leading to lower amounts of NO₂ and N₂O emission.