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Figure S1.(a) SEM image of typically synthesized Ir/TiON-NTs NTs and its corelated
EDX analsyis (b-d) at diffrent numbered areas (1-3) in (a), respetcevlly. The indcated
scale barin (a) is 1 um.
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Figure S2. The wide-angle XRD diffraction patterns of typically synthesized NTs. The
indicated lines at the bottom were taken from ICSD database. This is including black
lines for anatase (ICSD:172914) , blue lines for rutile (ICSD:33838), green lines for TiN
(ICSD:236801) and red lines for TiON (ICSD:426340), and magenta lines for Iridium
nanoparticles (ICSD:426948).
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Figure S3. UV—Vis diffuse reflectance spectroscopy measurements of the as-formed

materials
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Figure S4. LSV meausred on the typically prepared materials benchmarked in an
aqueous solution of 0.1 M KOH at a scan rate of 10 mV s atroom temperature under
dark.
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Figure S5. EIS meausred on the typically prepared materials benchmarked in an
aqueous solution of 0.1 M KOH in a frequency range from 100 kHz to 5 Hz with an AC
voltage amplitude of 0.8 V room temperature under light.

Mott-Schottky analysis

The Mott-Schottky analysis plot of the as-made materials was measured at 100 Hz in the
potential range ranged from -1 V to +0.5 V. The charge distribution at the protective
layer/electrolyte is usually determined based on Mott-Schottky relationship by measuring
electrode capacitance C, as a function of electrode potential E, and assuming that the
contribution of the double layer capacitance and the presence of surface states can be

neglected

(1)

where e is the electron charge (1.60 x 10 coulombs), € is the dielectric constant, g the
permittivity of vacuum (8.854 x 10712 F/m), N, is the donor density (cm=3), Ez is the flat band
potential, K, is the Boltzmann constant (1.38 x 10-23 J/K) and T is the absolute temperature 3
4. From Equation Ngcan be determined from the slope of the experimental

1/C? versus E plots, and Eg, from the extrapolation of the linear portion to 1/C?> = 0.
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Figure S6. Mott-Schottky plot of the typically prepared materials benchmarked in an

aqueous solution of 0.1 M KOH in a potential range from -1 to 0.5 V vs SCE at 100 Hz

frequency a) dark and b) light.



