Supplementary information

Promotion effect of Mg on post-synthesized Sn-Beta zeolite for the conversion of

glucose to methyl lactate

Xiaomei Yang^a, Bin Lv^a, Tianliang Lu^b, Yunlai Su^a, Lipeng Zhou^{a,*}

^a Green Catalysis Center and College of Chemistry, Zhengzhou University, 100

Kexue Road, Zhengzhou 450001, China

^b School of Chemical Engineering, Zhengzhou University, 100 Kexue Road,

Zhengzhou 450001, China

* Corresponding author: <u>zhoulipeng@zzu.edu.cn</u>

Scheme S1 Conversion of glucose to alkyl lactate in alcohol.

Fig. S1 UV-vis DR spectra of SnO₂, MgO and deAl-Beta.

Fig. S3 FT-IR spectra of CHCl₃ adsorbed on (a) deAl-Beta, (b) Mg-Beta, (c) Sn-Beta, (d) 0.25Mg-Sn-Beta, (e) 1Mg-Sn-Beta and (f) 4Mg-Sn-Beta at room temperature with different desorption time.

Fig. S4 Kinetic analysis of MLA formation from fructose in methanol in the presence of 1Mg-Sn-Beta.

Fig. S5 Kinetic analysis of MLA formation from fructose in methanol in the presence of Sn-Beta.

Fig. S6 Arrhenius plots of the retro-aldol of the fructose over 1Mg-Sn-Beta and Sn-Beta.

Fig. S7 Effect of reaction temperature on the formation of other C₃ products from glucose.

Fig. S8 The recyclability of 1Mg-Sn-Beta catalyst with the initial activity for MLA formation. Reaction conditions: glucose (0.37 g), 1Mg-Sn-Beta (0.20 g), methanol (15 mL), N_2 (0.4 MPa), 120 °C, 0.5 h.

Fig. S9 XRD patterns of fresh and reused 1Mg-Sn-Beta.

Catalyst	S _{BET}	S _{ext} ^a	V _{tot}	V _{meso} ^a	V _{micro}	Sn	Mg	Relative
	(m ²	(m ²	(mL	(mL	(mL	content	content	crystallinity
	g ⁻¹)	g ⁻¹)	g ⁻¹)	$g^{-1})^a$	g ⁻¹)	(wt%) ^b	(wt%) ^b	(%)
Fresh	515	164	0.54	0.36	0.18	1.90	0.392	100
Reused	453	157	0.49	0.34	0.15	1.85	0.384	97

Table S1 Results of N2 physisorption of fresh and reused 1Mg-Sn-Beta

^aExternal surface area = BET surface area - micropore surface area; mesopore volume = total pore volume - micropore volume, where the micropore surface area and volume were determined by the t-plot method at a relative pressure of 0.05-0.70. ^bDetermined by ICP.

Reference