Electronic supplementary information (ESI)

Methanol to olefins over H-RUB-13 zeolite: Regulation of framework aluminum sitting and acid density and their relation to the catalytic performance

Li Zhang,^{a,b} Sen Wang,^a Dezhi Shi,^{a,b} Zhangfeng Qin,*,^a Pengfei Wang,^a Guofu Wang,^a Junfen Li,*,^a Mei Dong,^a Weibin Fan,^a and Jianguo Wang*,^{a,b}

^a State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, P.O. Box 165, Taiyuan, Shanxi 030001, PR China

^b University of the Chinese Academy of Sciences, Beijing 100049, PR China

* Corresponding authors. Tel.: +86-351-4046092; Fax: +86-351-4041153. E-mail address: qzhf@sxicc.ac.cn (Z. Qin); lijunfen@sxicc.ac.cn (J. Li); iccjgw@sxicc.ac.cn (J. Wang)

As the Electronic supplementary information (ESI) of the manuscript "Methanol to olefins over H-RUB-13 zeolite: Regulation of framework aluminum sitting and acid density and their relation to the catalytic performance", following materials are provided:

XRD patterns, SEM images, Py-IR spectra and FT-IR spectra of the H-Al-B-RUB-13 zeolites; deconvolution of the ²⁷Al MAS NMR spectra; catalytic performance of the aluminum-free H-B-RUB-13 zeolite in MTO; detailed reaction results for MTO over the H-Al-B-RUB-13 zeolites.

Table S1. Calculated absolute chemical shielding tensors (δ_{abs}) and relative chemical shifts (δ_{rel}) for the MAS NMR of ²⁷Al located at different T sites in the framework of H-RUB-13 zeolites

T site	$\delta_{ m abs}$ (ppm)	$\delta_{ m rel}~(m ppm)^{a}$
T1	530.1	56.8
T2	531.2	55.7
Т3	529.1	57.8
T4	528.5	58.4

Note: The relative chemical shift of ²⁷Al MAS NMR is the difference between the calculated chemical shift of Al(H₂O)₆³⁺ (586.9 ppm) and the absolute chemical shielding tensors of different T sites, that is, $\delta_{rel} = 586.9 - \delta_{abs}$.

Table S2. ²⁷Al chemical shifts in the isotropic protection (δ_{F1} , ppm) and in the observed dimension (δ_{F2} , ppm) as well as the isotropic chemical shifts (δ_{iso} , ppm) and the second-order quadrupolar effect parameter (S_Q , MHz) for the H-Al-B-RUB-13-170-*n* series zeolites (Si/Al \approx 170) with different Si/B (*n*) ratios

Si/B = 47				Si/B = 85				Si/B = 155				Si/B = 239			
$\delta_{ m F1}$	$\delta_{ m F2}$	$\delta_{ m iso}$	SQ	$\delta_{ m F1}$	$\delta_{ m F2}$	$\delta_{ m iso}$	SQ	$\delta_{ m F1}$	$\delta_{ m F2}$	$\delta_{ m iso}$	SQ	$\delta_{ m F1}$	$\delta_{ m F2}$	$\delta_{ m iso}$	SQ
57.5	56.5	57.1	6.6	57.5	56.5	57.1	6.6	57.5	56.5	57.1	6.6	57.0	56.0	56.6	6.5
59.0	58.0	58.6	6.6	59.0	58.0	58.6	6.6	59.5	58.2	59.0	6.7	59.0	57.5	58.4	6.6
62.0	60.5	61.4	6.8	61.5	60.5	61.1	6.8	61.5	60.5	61.1	6.9	61.5	60.0	61.0	6.8

Note: The second-order quadrupolar effect parameter (S_Q) and isotropic chemical shifts (δ_{iso}) are obtained by: $S_Q^2 = \delta_{iso} - \delta_{F2} \times k$, $\delta_{iso} = (17\delta_{F1} + 10\delta_{F2}) / 27$, and $k = [4I \times (I+1) - 3] / [4I \times (2I-1) \times v_0]^2 \times 3 \times 105$, where I (5/2) is the spin quantum number of ²⁷Al and v_0 is Larmor frequency.

Item	Value
Si/B molar ratio measured by ICP-OES	15
Acidity determined by NH_3 -TPD (µmol g ⁻¹)	10.0
Methanol conversion at 27 min on stream (%)	3.8
Selectivity to CH_4 ; $C_{2-4}^=$; and others (%)	22.5; 72.6; and 4.9
Methanol conversion at 159 min on stream (%)	1.3
Selectivity to CH_4 ; $C_{2-4}^=$; and others (%)	26.8; 68.2; and 5.0

Table S3. Chemical composition and catalytic performance of the aluminum-free H-B-RUB-13 zeolite in MTO

Note: Reaction was carried out at 450 °C and atmospheric pressure, with a methanol WHSV of 1.0 h⁻¹ and a carrier gas (N₂) flow of 54 mL min⁻¹. $C_{2-4}^{=}$ represents olefins from ethene to butenes.

H-Al-B-RUB-13-m-n	Conv.	Pro	$C_{2-5}^{=}/C_{2-5}$							
	(70)	C ₁	$C_2^{=}$	$C_{3}^{=}$	$C_4^{=}$	$C_{5}^{=}$	C ₂₋₅	C ₆₊	C ₂₋₅ =	
H-Al-B-RUB-13-170-47	98.9	0.4	19.7	48.6	22.2	5.7	2.2	0.8	96.2	43.7
H-Al-B-RUB-13-170-85	98.4	0.5	19.1	47.9	22.6	6.1	2.6	1.0	95.7	36.8
H-Al-B-RUB-13-170-155	98.5	0.4	19.9	47.9	22.6	5.4	2.3	1.0	95.8	41.6
H-Al-B-RUB-13-170-239	98.4	0.4	19.5	47.1	22.4	5.8	3.4	1.1	94.8	27.9
H-Al-B-RUB-13-59-17	100	0.7	14.2	32.6	28.2	10.0	8.4	5.9	85.0	10.1
H-Al-B-RUB-13-76-17	100	0.6	16.6	39.5	23.9	8.8	9.1	5.8	88.8	9.6
H-Al-B-RUB-13-169-17	97.1	0.7	19.4	49.1	21.7	5.3	2.6	0.9	95.7	36.8
H-Al-B-RUB-13-276-17	90.1	0.6	19.6	47.1	24.1	6.2	1.7	0.7	97.0	57.1

Table S4. Reaction results of MTO over the H-Al-B-RUB-13-m-n zeolites with different Si/Al (m) and Si/B (n) ratios

Note: The MTO reactions were carried out at 400 °C and atmospheric pressure, with a methanol WHSV of 1.0 h^{-1} ; the data were reported at 90 min on stream.

Fig. S1. XRD patterns of the as-synthesized Al-B-RUB-13 zeolites. **(I)** Prepared with Si/B = 1 and different Si/Al ratios in the synthesis gel: (a) Si/Al = 30; (b) Si/Al = 50; (c) Si/Al = 70; (d) Si/Al = 100; (e) Si/Al = 200; (f) Si/Al = 300; (g) Si/Al = ∞ . **(II)** Prepared with Si/Al = 200 and different Si/B ratios in the synthesis gel: (a) Si/B = 1; (b) Si/B = 30; (c) Si/B = 70; (d) Si/B = 100; (e) Si/B = 200; (f) Si/B = 250; (g) Si/B = 300; (h) Si/B = ∞ .

Fig. S2. SEM images of the as-synthesized Al-B-RUB-13 zeolites prepared with Si/Al = 200 and different Si/B ratios in the synthesis gel: (a) Si/B = 30; (b) Si/B = 70; (c) Si/B = 100; (d) Si/B = 200 and those prepared with Si/B = 1 and different Si/Al ratios in the synthesis gel: (e) Si/Al = 70; (f) Si/Al = 100; (g) Si/Al = 200; (h) Si/Al = 300.

Fig. S3. Py-IR spectra collected at 150 °C for the H-Al-B-RUB-13-170-*n* series zeolites with $Si/Al \approx 170$ and different Si/B (*n*) ratios: (a) Si/B = 47; (b) Si/B = 85; (c) Si/B = 155; (d) Si/B = 239.

Fig. S4. FT-IR spectra in full range (I), in the OH stretching vibration range (II), and in the framework region (III) collected for the H-Al-B-RUB-13-170-*n* series zeolites with Si/Al \approx 170 and different Si/B (*n*) ratios: (a) Si/B = 47; (b) Si/B = 85; (c) Si/B = 155; (d) Si/B = 239.

Fig. S5. 2D ²⁷Al MQ/MAS NMR spectra of the H-Al-B-RUB-13-170-*n* series zeolites with $Si/Al \approx 170$ and different Si/B (*n*) ratios: (a) Si/B = 47; (b) Si/B = 85; (c) Si/B = 155; (d) Si/B = 239.

Fig. S6. Deconvolution of the ²⁷Al MAS NMR spectra of the H-Al-B-RUB-13-170-*n* series zeolites with Si/Al \approx 170 and different Si/B (*n*) ratios: (a) Si/B = 47; (b) Si/B = 85; (c) Si/B = 155; (d) Si/B = 239. The black and red lines represent the measured and fitted curves, respectively.

Fig. S7. ²⁷Al MAS NMR spectra of the H-Al-B-RUB-13-*m*-17 seires zeolites with Si/B \approx 17 and different Si/Al (*m*) ratios: (a) Si/Al = 59; (b) Si/Al = 76; (c) Si/Al = 169; (d) Si/Al = 276.

Fig. S8. Deconvolution of the ²⁷Al MAS NMR spectra of the H-Al-B-RUB-13-*m*-17 seires zeolites with Si/B \approx 17 and different Si/Al (*m*) ratios: (a) Si/Al = 59; (b) Si/Al = 76; (c) Si/Al = 169; (d) Si/Al = 276. The black and red lines represent the measured and fitted curves, respectively.

Fig. S9. Products distribution profiles for MTO over H-Al-B-RUB-13-170-*n* series zeolites with Si/Al \approx 170 and different Si/B (*n*) ratios: (a) Si/B = 47; (b) Si/B = 85; (c) Si/B = 155; (d) Si/B = 239. The reactions were carried out in a fixed-bed reactor at 400 °C and atmospheric pressure, with a methanol WHSV of 1.0 h⁻¹.

Fig. S10. Products distribution profiles for MTO over H-Al-B-RUB-13-*m*-17 series zeolites with Si/B \approx 17 and different Si/Al (*m*) ratios: (a) Si/Al = 59; (b) Si/Al = 76; (c) Si/Al = 169; (d) Si/Al = 276. The reactions were carried out in a fixed-bed reactor at 400 °C and atmospheric pressure, with a methanol WHSV of 1.0 h⁻¹.

Fig. S11. GC-MS chromatograms of the organic species retained in H-Al-B-RUB-13-170-47 (a) and H-Al-B-RUB-13-170-85 after the ${}^{12}C/{}^{13}C$ -methanol switch experiment at 300 °C. The symbol "*" represents the internal standard (hexachloroethane).