Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2020

Supplementary data

Exploring CoP core-shell nanosheets by Fe and Zn dual cation doping as

efficient electrocatalyst for overall water splitting

Pengcheng Wang,¹ Xuefeng Liu,¹ Yaotian Yan,¹ Jian Cao,² Jicai Feng¹ and Junlei

Qi*1

1. State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001, China

2. School of Materials Science and Engineering, Harbin Institute of Technology,

Harbin, China

*Corresponding authors:

E-mail: jlqi@hit.edu.cn (J.L. Qi)

1. Experimental Section

Fabrication of ZnCo MOF: The commercial carbon cloth was treated with concentrated HNO₃, ethanol and deionized water several times, according to previous research.^[1] Firstly, 1.33 mmol Co(NO₃)₂· $6H_2O$ and 0.67 mmol Zn(NO₃)₂· $6H_2O$ are dissolved in 40 mL deionized water to form a homogeneous solution, followed by adding a deionized water of 1.312 g 2-methylimidazole (40 mL). Then, a piece of clean carbon cloth (2×5 cm²) was immersed in the prepared solution for 4h. After that, the obtained sample was washed by deionized water and ethanol for several time, and dried at 60 °C overnight.

Fabrication of Fe/Zn-Co₃O₄: First, 80 mg FeSO₄· 7H₂O is dissolved in 10 ml H₂O to get a homogeneous solution, while adding 10 ml ethanol. Subsequently, a piece of ZnCo MOF is immersed in above solution and aged for 15 min at room temperature. Then, the obtained Fe-ZnCo precursor is washed by deionized water and ethanol, and dried at 60 °C overnight. Finally, the Fe/Zn-Co₃O₄ is obtained by annealing in air at 450 °C for 2h. Different amounts of FeSO₄· 7H₂O (20, 50, 80 and 110 mg) are set to obtain various Fe/Zn-Co₃O₄, shortly named as Fe/Zn-Co₃O₄-20~110. In addition, the Zn-Co₃O₄ is prepared by directly annealing ZnCo-MOF via similar process.

Fabrication of Fe/Zn-CoP: The 0.3 g NaH₂PO₂ powers are placed on a glass plate placed at upstream, and Fe/Zn-Co₃O₄ are placed at the downstream of the tube furnace. The furnace is heated to 300 °C at Ar atmosphere with a heating rate of 5 °C min⁻¹, and maintained at 300 °C for 2h. Various Fe/Zn-CoP samples are obtained by the same phosphating process, and shortly named as Fe/Zn-CoP-20~110. For comparison, Zn-CoP is obtained by the similar phosphating process.

2. Material characterization

The morphologies and chemical constituents of the samples are characterized by

SEM, TEM and EDX. The XRD is used to detect the crystal structure of samples. The chemical constituents of the as-prepared samples were detected by XPS an Raman. The binding energy of obtained samples is calibrated based on the C 1s peak at 284.4 eV. The Brunauer-Emmett-Teller (BET) method is used to evaluate the surface areas of the powders scraped from carbon cloth.

3. Electrochemical measurements

All electrochemical performances were measured in the electrochemical workstation (CHI 760E). The HER and OER properties were measured in a three-electrode system, and the obtained samples, Hg/HgO and graphite rod were used as working electrode, reference electrode and counter electrode, respectively. The polarization curves were measured at 2 mV s⁻¹, and then compensated with iR-correction. Before tests, all samples were cycled at 20 mV s⁻¹ until the stability of cyclic voltammetry (CV), then the data were collected. The reference electrode of Pt/C (20 wt% Pt) and RuO₂ are also prepared on carbon cloth, and the prepared method was according to previously reported researches.^[2,3] The polarization curves of HER and OER are normalized by C_{dl}, as following: ECSA=(C_{dl-catal}.-C_{dl-CC})/C_s, where C_s value of 0.040 mF cm⁻² is adopted.^[4,5]

Fig. S1. SEM images of ZnCo MOF

Fig. S2. SEM images of Fe/Zn-Co₃O₄ (The Fe content is 80 mg)

Fig. S3. XRD patterns of Fe/Zn-Co₃O₄ and Zn-Co₃O₄ (the XRD results were tested by the powder scraped from carbon cloth)

Fig. S4. XRD patterns of Fe/Zn-CoP and Zn-CoP (the XRD results were tested by the powder

scraped from carbon cloth)

Fig. S5. SEM images of Fe/Zn-CoP-20 (a1-a3), Fe/Zn-CoP-50 (b1-b3), Fe/Zn-CoP-80 (c1-c3), and

Fe/Zn-CoP-110 (d1-d3)

Fig. S6. SEM images of Zn-Co₃O₄ (a₁-a₃) and Zn-CoP (b₁-b₃)

Fig. S7 EDX spectra of Fe/Zn-CoP

Fig. S8 BET surface areas of Fe/Zn-CoP and Zn-CoP

	Fe/Zn-CoP	After HER	After OER	After HER	After OER
		activation	activation	cycle	cycle
Р	54.68	33.79	1.42	37.42	2.57
Fe	11.17	23.15	35.94	25.91	23.15
Co	22.37	42.54	53.16	36.32	68.99
Zn	11.78	0.51	8.47	0.34	5.29

Table S1 EDX results of obtained samples

Fig. S9 Raman spectrum of Fe/Zn-CoP (the result show that the Fe/Zn-CoP is rich in carbon)

Fig. S10 (a) HER polarization curves for Fe/Zn-CoP with different conditions. (b) Nyquist plots of

obtained samples. (c-g) The CV curves for estimating the ECSA in HER tests. (h) C_{dl} values of

obtained samples.

Fig. S11 HER polarization curves of Fe/Zn-CoP and Zn-CoP normalized by ECSA

Fig. S12 SEM images of Fe/Zn-CoP after HER cycle.

Fig. S13 XRD pattern of Fe/Zn-CoP after HER cycle.

Fig. S14 XPS spectras of Fe/Zn-CoP after HER cycle.

Fig. S15 (a) OER polarization curves for Fe/Zn-CoP with different conditions. (b) Nyquist plots of obtained samples. (c-g) The CV curves for estimating the ECSA in OER tests. (h) C_{dl} values of

obtained samples.

Fig. S16 OER polarization curves of Fe/Zn-CoP and Zn-CoP normalized by ECSA.

Fig. S17 SEM images of Fe/Zn-CoP after OER cycle.

Fig. S18 (a, b) TEM, (c) HRTEM, (d) corresponding SAED pattern, and (e) elemental mapping

images of Fe/Zn-CoP after OER cycle.

Fig. S19 XRD pattern of Fe/Zn-CoP after OER cycle.

Fig. S20 XPS spectras of Fe/Zn-CoP after OER cycle.

Table S2 Comparison of HER performances for Fe/Zn-CoP core-shell nanosheets

Electrocatalyst	Substrate	Overpotential (mV)	Tafel slope (mV dec ⁻¹)	Ref.
Fe/Zn-CoP	Carbon cloth	75, 116, 132 at 10, 50, 100 mA cm ⁻²	57.9	This work
Co ₅ Mo _{1.0} P nanosheets	Ni foam	173, 300 at 10, 100 mA cm ⁻²	190.1	Nano Energy 2018, 45 , 448
Ni ₂ P nanosheets	Glassy carbon electrode	168 at 10 mA cm ⁻²	63	J. Mater. Chem. A 2018, 6 , 18720-18727
Al-Ni ₂ P	Ti mesh	129 at 10 mA cm ⁻²	129	Chem. Commun. 2018, 54 , 2894-2897.
CoP nanowire by oxygen plasma engraving	Carbon cloth	180 at 100 mA cm ⁻²	42.8	<i>Adv. Mater.</i> 2018, 30 , 1703322.
Co/CoP	Glassy carbon rotating disk electrode	340 at 10 mA cm ⁻²	79.5	Adv. Energy Mater. 2017, 7 , 1602355
Ni-Co-P HNBs	-	107 at 10 mA cm ⁻²	76	Energy Environ. Sci. 2018, 11 , 872-880
CoP/NCNHP	Glassy carbon electrode	115 at 10 mA cm ⁻²	53	J. Am. Chem. Soc. 2018, 140 , 2610-2618
CoP ₃ HSs	Carbon cloth	116 at 10 mA cm ⁻²	82	<i>Appl. Surf. Sci.</i> 2018, 427 , 800-806
Multishelled Ni ₂ P	Rotation disk electrode	98 at 10 mA cm ⁻²	86.4	Chem. Mater. 2017, 29 , 8539-8547
CeO ₂ -Cu ₃ P	Ni foam	148 at 20 mA cm ⁻²	132	Nanoscale 2018, 10 , 2213-2217
MoP/CNT	Glass carbon disk	114 at 10 mA cm ⁻²	51.6	ACS Sustainable Chem. Eng. 2018, 6 , 11414-11423
Cu _{0.3} Co _{2.7} P/NC	Glassy carbon electrode	220 at 10 mA cm ⁻²	122	Adv. Energy Mater. 2017, 7 , 1601555

with previsoulsy reported electrocatalysts in the alkaline media.

1.If not metioned specifically, all overpotentials were corrected with iR compensation. 2. If not metioned specifically, all electrocatalysts are directly synthesized on conductive substrates.

Table S3 Comparison of OER performances for Fe/Zn-CoP core-shell nanosheets

Electrocatalyst	Substrate	Overpotential (mV)	Tafel slope (mV dec ⁻¹)	Ref.
Fe/Zn-CoP	Carbon cloth	267, 302, 327 at 10, 50, 100 mA cm ⁻²	52.8	This work
Fe ₁ Co ₁ -P/C	Glassy carbon electrode	360 at 10 mA cm ⁻²	-	Small Methods 2018, 2 , 1800214
CoP/NCNHP	Glassy carbon electrode	305 at 10 mA cm ⁻²	70	J. Am. Chem. Soc. 2018, 140 , 2610-2618
Mo-CoP	Carbon cloth	310, 370 at 10, 100 mA cm ⁻²	56	Nano Energy 2018, 48 , 73–80
H-CoP@NC	Glassy carbon electrode	320 at 10 mA cm ⁻²	73	Inorg. Chem. 2019, 58, 14652-14659
Co/CoP	Glassy carbon rotating disk electrode	340 at 10 mA cm ⁻²	79.5	Adv. Energy Mater. 2017, 7, 1602355
FeP-FeP _x P _y	Glassy carbon electrode	280 at 10 mA cm ⁻²	48	ACS Appl. Nano Mater. 2018, 1, 617-624
Multishelled Ni ₂ P	Rotation disk electrode	270 at 10 mA cm ⁻²	40.4	Chem. Mater: 2017, 29 , 8539-8547
Ni ₂ P nanosheets	Glassy carbon electrode	320 at 10 mA cm ⁻²	105	J. Mater. Chem. A 2018, 6 , 18720-18727
Co3O4/NiCo2O4 DSNCs	Ni foam	340 at 10 mA cm ⁻²	88	J. Am. Chem. Soc. 2015, 137 , 5590
CoP-Fe ₂ O ₃	ITO substrate	302 at 10 mA cm ⁻²	-	J. Mater. Chem. A 2018, 6 , 4783-4792
CoP/rGO-400	Glass carbon electrode	340 at 10 mA cm ⁻²	66	Chem. Sci. 2016, 7, 1690
Ni-Co-P	Glass carbon electrode	300 at 10 mA cm ⁻²	80	<i>Adv. Funct. Mater.</i> 2018, 28 , 1706008

with previsoulsy reported electrocatalysts in the alkaline media.

1.If not metioned specifically, all overpotentials were corrected with iR compensation. 2. If not metioned specifically, all electrocatalysts are directly synthesized on conductive substrates.

Table S4 Comparison of all water-splitting performances for Fe/Zn-CoP core-shell

 nanosheets with previsoulsy reported electrocatalysts in the alkaline media.

Electrocatalyst	Substrate	Voltage	Ref.
Fe/Zn-CoP	Carbon cloth	1.59, 1.62, 1.65 at 10, 20, 50 mA cm ⁻²	This work
CoP/NCNHP	Glassy carbon electrode	1.64 at 10 mA cm ⁻²	J. Am. Chem. Soc. 2018, 140 , 2610-2618
Ni-Co-P HNBs	-	1.62 V at 10 mA cm ⁻²	Energy Environ. Sci. 2018, 11 , 872-880
Cu _{0.3} Co _{2.7} P/NC	Glassy carbon electrode	1.74 at 70 mA cm ⁻²	Adv. Energy Mater. 2017, 7, 1601555
H-Co _{0.85} Se P	exfoliated graphene	1.64 V at 10 mA cm ⁻²	<i>Adv. Mater.</i> 2017, 29 , 1701589
Fe-CoP	Ti foam	1.60 V at 10 mA cm ⁻²	<i>Adv. Mater.</i> 2017, 29 , 1602441
CoP-Fe ₂ O ₃	ITO substrate	1.67 V at 100 mA cm ⁻²	J. Mater. Chem. A 2018, 6 , 4783-4792
CoOx-CoSe film	Ni foam	1.66 V at 10 mA cm ⁻²	J. Mater. Chem. A 2016, 4 , 10933
H-CoP@NC	Glassy carbon electrode	1.72 V at 10 mA cm ⁻²	<i>Inorg. Chem.</i> 2019, 58 , 14652-14659

1.If not metioned specifically, all overpotentials were corrected with iR compensation. 2. If not metioned specifically, all electrocatalysts are directly synthesized on conductive substrates.

Reference

[1] T. Liu, W. Wang, M. Yi, Q. Chen, C. Xu, D. Cai, H. Zhan, Chem. Eng. J. 354 (2018) 454-462.

[2] Z. Peng, D. Jia, A. M. Al-Enizi, A. A. Elzatahry, G. Zheng, Adv. Energy Mater. 5 (2015) 1402031.

[3] C. C. Mccrory, S. Jung, J. C. Peters and T. F. Jaramillo, J. Am. Chem. Soc. 135 (2013) 16977-16987.

[4] D. Voiry, M. Chhowalla, Y. Gogotsi, N. Kotov, Y. Li, R. Penner, R. Schaak, P. Weiss, ACS Nano 12 (2018) 9635-9638.

[5] T. Liu, P. Li, N. Yao, G. Cheng, S. Chen, W. Luo, Y. Yin, Angew. Chem. Int. Ed. 58 (2019) 4679-4684.