Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2020

1	Supporting Information
2	Electronic effects of transition metal dopant Fe(100) and
3	Fe ₅ C ₂ (100) surfaces for CO activation
4	
5	Huiyong Gong, ^{abc} Yurong He ^d Junqing Yin, ^{abc} Suyao Liu, ^b Ming Qing, ^b Qing Peng, ^e
6 7	Chun-Fang Huo, ^b Hong Wang, * ^b Yong Yang, * ^{abc} Xiao-Dong Wen* ^{abc}
8	a) State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese
9	Academy of Sciences, Taiyuan, 030001, China; b) National Energy Center for Coal to
10	Liquids, Synfuels China Co., Ltd, Huairou District, Beijing, 101400, China; c)
11	University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049, P.
12	R. China; d) Beijing Advanced Innovation Center for Materials Genome Engineering,
13	Beijing Information S & T University, Beijing, 101400, China; e) Nuclear
14	Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI
15	48109 (USA)
16	
17	Corresponding Authors: Hong Wang (wanghong@synfuelschina.com.cn) Yong Yang
18	(yyong@sxicc.ac.cn) Xiao-Dong Wen (wxd@sxicc.ac.cn)
19	
20	
21 22	
22	
24	
25	
26	
27	
20 29	
30	
31	
32	
33	S1
	51

Table of Content 1 Table S1. Effects of zero point energy on CO activation energetics on M-doped 2 Fe(100) surfaces and Fe₅C₂(100) surfaces 3 Table S2 Optimized geometry parameters (Å) of adsorbed CO molecule toward M-4 atom on pure and M-doped Fe(100) surfaces 5 Table S3 Energetic parameter of CO dissociation toward M-atom on pure and M-6 doped Fe(100) surfaces 7 Table S4 Optimized geometry parameters (Å) of the adsorbed CO molecule away 8 from M-atom on pure and M-doped Fe(100) surfaces 9 Table S5 Energetic parameter of CO dissociation away from M-atom on pure and 10 11 M-doped Fe(100) surfaces Table S6 Summary of optimized geometry parameters (Å) of the adsorbed CO 12 molecule on pure and M-doped Fe(100) surfaces 13 Table S7 The integrated overlap populations up to Femi level (ICOHP) of C-O, M-C 14 and M-O bonding of CO adsorption IS for pure and M-doped Fe(100) surfaces 15 Table S8 Optimized geometry parameters (Å) of the adsorbed CO molecule on pure 16 and M-doped Fe₅C₂(100) surfaces 17 Table S9 The integrated overlap populations up to Femi level (ICOHP) of C–O, M–C 18 and M-O bonding of CO adsorption IS for pure and M-doped Fe₅C₂(100) surfaces 19 Fig. S1 Paths of CO dissociation on Fe(100)–M surfaces 20 Fig. S2 The relationships between activation barrier (E_a) and the Bader charge (q_{co}) of 21 absorbed CO on pure and doped Fe(100) surfaces 22 **Fig. S3** The relationships between activation barrier (E_a) and the Bader charge (q_{co}) of 23 absorbed CO on pure and doped $Fe_5C_2(100)$ surfaces 24 Fig. S4 PDOS and pCOHP curves for free CO molecule 25 Fig. S5 PDOS and pCOHP curves for CO adsorption IS on pure and M-doped Fe(100) 26 surfaces 27 Fig. S6 PDOS and pCOHP curves for CO adsorption IS on pure and M-doped 28 29 $Fe_5C_2(100)$ surfaces

S2

1 Table S1. The adsorption energy (Eads/eV), dissociation barrier (Ea/eV) and 2 dissociation energy ($\Delta E/eV$) of CO before and after zero point energy corrections on 3 doped Fe(100) and Fe₅C₂(100) surfaces

	E _{ads}	E _{ads} -ZPE	E_{Δ}	Ea	E _a -ZPE	E_{Δ}	ΔΕ	ΔE -ZPE	E_Δ
Fe(100)–Cr	-2.45	-2.39	0.06	0.87	0.83	-0.04	-0.99	-1.13	-0.04
Fe(100)–Mn	-2.31	-2.26	0.05	0.92	0.90	-0.02	-0.91	-0.93	-0.02
Fe(100)–Fe	-2.25	-2.20	0.05	1.09	1.06	-0.03	-0.85	-0.89	-0.04
Fe(100)-Co	-2.24	-2.19	0.05	1.13	1.10	-0.03	-0.82	-0.85	-0.03
Fe(100)–Ni	-2.14	-2.09	0.05	1.17	1.14	-0.03	-0.77	-0.81	-0.04
Fe(100)–Cu	-1.94	-1.90	0.04	1.22	1.20	-0.02	-0.73	-0.76	-0.03
	E _{ads}	E _{ads} -ZPE	E _Δ	Ea	E _a -ZPE	E_{Δ}	ΔΕ	ΔE-ZPE	E_{Δ}
Fe ₅ C ₂ (100)–C	r –2.83	-2.77	0.07	0.48	0.45	-0.03	-0.75	-0.77	-0.02
Fe ₅ C ₂ (100)–M	n –2.41	-2.35	0.06	0.69	0.65	-0.04	0.03	0.01	-0.02
Fe ₅ C ₂ (100)–Fe	e –2.26	-2.20	0.06	0.77	0.73	-0.04	0.27	0.24	-0.03
Fe ₅ C ₂ (100)–C	o –2.09	-2.05	0.04	0.91	0.88	-0.03	0.36	0.35	-0.01
Fe ₅ C ₂ (100)–N	i –1.91	-1.86	0.05	0.98	0.95	-0.03	0.52	0.50	-0.02
Fe ₅ C ₂ (100)–C	u —1.75	-1.70	0.05	1.12	1.09	-0.03	0.86	0.84	-0.02

1 Table S2. Optimized geometry parameters (Å) of adsorbed CO molecule toward M-

surfaces	state	C-O(A)	O-M(A)		O-Fe	(A)		C-M(A)		C-Fe(A)		
	IS	1.331	2.073	2.1	2.135			2.310	2.184	1.912	1.951	
Fe(100)-Cr	TS	1.899	1.887	1.885				2.261	2.037	1.872	1.894	
	FS	3.089	1.999	1.991	1.991 2.038			2.115	1.	966 1.898	1.915	
	IS	1.329	2.118	2.1	20			2.395	2.159	1.903	1.962	
Fe(100)-Mn	TS	1.897	1.832	1.947		2.253	2.054	1.870	1.899			
	FS	3.095	2.022	1.994	2.041	2.224		2.087	1.975	1.907	1.922	
	IS	1.317	2.126	2.1	25			2.205	2.204	1.950	1.949	
Fe(100)-Fe	TS	1.936	1.889	1.8	1.889		2.067	2.067	1.895	1.895		
	FS	3.048	2.131	1.995	1.994	2.136		1.979	1.978	1.905	1.905	
	IS	1.308	2.211	2.088				2.167	2.242	1.974	1.938	
Fe(100)-Co	TS	1.948	1.919	1.8	1.853			2.018	2.094	1.915	1.897	
	FS	3.082	2.488	1.987	1.956	2.079		1.964	1.967	1.916	1.909	
	IS	1.312		2.0)88	2.18	34	1.947	2.209	2.169	1.925	
Fe(100)-Ni	TS	1.950	1.958	1.8	322			1.994	2.084	1.920	1.903	
	FS	3.143	2.460	1.994	1.926	2.048		1.974	1.954	1.924	1.916	
	IS	1.288		2.0)36	2.66	56	2.292	2.278	2.049	1.895	
Fe(100)-Cu	TS	1.989	2.026	1.7	794			2.186	2.038	1.879	1.893	
	FS	3.202	2.494	2.002	1.923	2.057		2.100	1.949	1.907	1.919	

2 atom on pure and M–doped Fe(100) (M = Cr / Mn / Co / Ni / Cu) surfaces

3

0

4

5 Table S3. Energetic parameter of CO dissociation toward M-atom on pure and M-

6

doped $Fe(100)$ (M =	: Cr / Mn / Co /	/ Ni / Cu/) surfaces
----------------------	------------------	----------------------

surface	E _{ads} (IS)/eV	E _{ads} (FS)/eV	E _a /eV	$\Delta E/eV$
Fe(100)–Cr	-2.45	-3.44	0.87	-0.99
Fe(100)–Mn	-2.31	-3.22	0.92	-0.91
Fe(100)–Fe	-2.25	-3.10	1.09	-0.85
Fe(100)–Co	-2.15	-2.93	1.24	-0.78
Fe(100)–Ni	-2.15	-2.77	1.50	-0.62
Fe(100)–Cu	-1.94	-2.59	1.54	-0.66

surfaces	state	C-O(A)	O-M(A)	O-Fe(A)			C-M(A)		C-F	e(A)		
	IS	1.324		2.1	125	2.0	2.096		2.150	2.149		1.959
Fe(100)-Cr	TS	1.943			1.894	1.877		2.033	2.061	2	2.025	1.899
	FS	3.018		2.164	1.994	1.985	2.143	2.079	1.97	5	1.940	1.905
	IS	1.320		2.1	2.102		18	2.077	2.171	2.1	148	1.935
Fe(100)-Mn	TS	1.942		1.9	902	1.8	1.870		2.062	2.029		1.892
	FS	3.033		2.166	2.000	1.992	2.117	1.965	1.957	1.9	983	1.889
	IS	1.317	2.126	2.1	25			2.205	2.204	1.9	950	1.949
Fe(100)-Fe	TS	1.936 1.889 1.889		389			2.067	2.067	1.8	395	1.895	
	FS	3.048	2.131	1.995	1.994	2.136		1.979	1.978	3.0	048	2.131
	IS	1.314		2.107		2.1	53	1.928	2.213	2.1	198	1.941
Fe(100)-Co	TS	1.959		1.9	902	1.867		1.865	2.029	2.1	151	1.891
	FS	3.074		2.149	2.003	1.995	2.146	1.898	1.966	1.9	994	1.901
	IS	1.314		2.0)88	2.1	72	1.948	2.205	2.1	174	1.926
Fe(100)-Ni	TS	1.968		1.9	916	1.8	352	1.869	2.012	2.1	163	1.887
	FS	3.062		2.169	2.013	1.993	2.133	1.913	1.957	1.9	989	1.905
	IS	1.287		2.0)37	2.6	538	2.283	2.280	2.0)54	1.891
Fe(100)-Cu	TS	1.947		1.9	926	1.8	351	1.973	2.007	2.0	084	1.883
	FS	3.023		2.203	2.003	1.981	2.114	2.022	1.954	1.9	956	1.893

1 Table S4. Optimized geometry parameters (Å) of the adsorbed CO molecule away

2 from M-atom on pure and M-doped Fe(100) (M = Cr / Mn / Co / Ni / Cu) surfaces

Table S5. Energetic parameter of CO dissociation away from M–atom on pure and

M-doped Fe(100) (M = Cr / Mn / Co / Ni / Cu) surf	aces

1			/	
surfaces	E _{ads} (IS)/eV	E _{ads} (FS)/eV	E_a/eV	$\Delta E/eV$
Fe(100)–Cr	-2.32	-3.21	1.08	-0.89
Fe(100)–Mn	-2.27	-3.11	1.09	-0.84
Fe(100)–Fe	-2.25	-3.10	1.09	-0.85
Fe(100)-Co	-2.24	-3.05	1.13	-0.82
Fe(100)-Ni	-2.14	-2.91	1.17	-0.77
Fe(100)–Cu	-1.94	-2.67	1.22	-0.73
Fe(100)–Mn Fe(100)–Fe Fe(100)–Co Fe(100)–Ni Fe(100)–Cu	-2.27 -2.25 -2.24 -2.14 -1.94	-3.11 -3.10 -3.05 -2.91 -2.67	1.09 1.09 1.13 1.17 1.22	-0.84 -0.85 -0.82 -0.77 -0.73

1 Table S6. Summary of optimized geometry parameters (Å) of the adsorbed CO

surfaces	state	C-O(A)	O-M(A)		O-F	e(A)		C-M(A)	C-Fe(A)		
	IS	1.330	2.072	2.1	2.135			2.306	2.181	1.914	1.951
Fe(100)-Cr	TS	1.897	1.832		1.947			2.253	2.054	1.870	1.899
	FS	3.087	2.001	1.992	2.045	2.24		2.114	1.966	1.898	1.914
	IS	1.338	1.977	2.1	76			2.085	2.214	1.962	1.974
Fe(100)-Mn	TS	1.843	1.797	1.9	966			1.997	2.128	1.915	1.901
	FS	3.002	1.912	1.957	2.064	2.372		1.873	2.016	1.952	1.930
	IS	1.317	2.126	2.1	25			2.205	2.204	1.950	1.949
Fe(100)-Fe	TS	1.936	1.889	1.8	889			2.067	2.067	1.895	1.895
	FS	3.048	2.131	1.995	1.994	2.136		1.979	1.978	1.905	1.905
	IS	1.314		2.107		2.1	53	1.928	2.213	2.198	1.941
Fe(100)-Co	TS	1.959		1.902		1.8	367	1.865	2.029	2.151	1.891
	FS	3.074		2.149	2.003	1.995	2.146	1.898	1.966	1.964	1.901
	IS	1.314		2.0	88	2.1	72	1.948	2.205	2.174	1.926
Fe(100)-Ni	TS	1.968		1.9	916	1.8	352	1.869	2.012	2.163	1.887
	FS	3.062		2.169	2.013	1.993	2.133	1.913	1.957	1.989	1.905
	IS	1.287		2.0)37	2.6	538	2.283	2.280	2.054	1.891
Fe(100)-Cu	TS	1.947		1.9	926	1.8	351	1.973	2.007	2.084	1.883
	FS	3.023		2.203	2.003	1.981	2.114	2.022	1.954	1.956	1.893

2 molecule on pure and M-doped Fe(100) (M = Cr / Mn / Co / Ni / Cu) surfaces

3

- 1 Table S7. The integrated overlap populations up to Femi level (ICOHP) of C-O, M-
- 2 C and M–O bonding of CO adsorption IS for pure and M–doped Fe(100) (M = Cr /

	Fe(100) -Cr	Fe(100) Mn	Fe(100) -Fe	Fe(100) -Co	Fe(100) –Ni	Fe(100) -Cu
ICOHP (C–O)	-10.33	-10.35	-10.86	-10.99	-10.95	-11.94
ICOHP (M–C)	-6.27	-6.38	-6.14	-6.07	-5.99	-5.48
ICOHP (M–O)	-2.31	-2.25	-1.58	-1.56	-1.56	-1.20

3 Mn / Co / Ni / Cu) surfaces

1 Table S8. Optimized geometry parameters (Å) of the adsorbed CO molecule on pure

surfaces	state	q-bader/CO	C-O(A)	O-M(A)	O-F	Fe(A)	C-M(A)		C-Fe(A)		
	IS	0.1411	1.342	2.016	2.06		2.25	2.242	1.844	1.868	
Fe ₅ C ₂ (100)-Cr	TS		1.77	1.808	1.99		1.988	2.027	1.847	1.862	
	FS		2.935	1.591	3.17		1.956	1.928	1.908	1.883	
	IS	0.1768	1.34	2.035	2.05		2.163	2.127	1.872	1.902	
Fe ₅ C ₂ (100)-Mn	TS	/	1.864	1.875	1.89		1.997	1.996	1.844	1.859	
	FS	/	2.824	1.77	2.05	2.022	1.92	1.961	1.859	1.856	
	IS	0.1264	1.331	2.057	2.06		2.136	2.142	1.869	1.902	
Fe ₅ C ₂ (100)-Fe	TS	/	1.882	1.876	1.89		1.967	1.999	1.841	1.858	
	FS	/	2.832	1.807	2.02	1.982	1.921	1.956	1.85	1.849	
	IS	0.084	1.321	2.083	2.05		2.125	2.139	1.878	1.899	
Fe ₅ C ₂ (100)-Co	TS	/	1.896	1.883	1.86		1.947	1.982	1.849	1.856	
	FS	/	2.851	1.826	1.99	1.942	1.906	1.955	1.848	1.841	
	IS	0.0515	1.316	2.131	2.04		2.141	2.143	1.88	1.9	
Fe ₅ C ₂ (100)-Ni	TS	/	1.907	1.921	1.82		1.944	1.974	1.853	1.856	
	FS	/	2.88	1.871	1.96	1.922	1.942	1.944	1.844	1.832	
	IS	0.0223	1.307	2.214	2.05		2.744	2.197	1.86	1.895	
Fe ₅ C ₂ (100)-Cu	TS	/	1.957	1.954	1.81		2.091	1.962	1.835	1.838	
	FS	/	2.893	1.93	1.94	1.917	2.012	1.923	1.831	1.832	

2 and M–doped Fe₅C₂(100) (M = Cr / Mn / Co / Ni / Cu) surfaces

3

4

5

6	Table S9. The integrated overlap populations up to Femi level (ICOHP) of C-O, M-
7	C and M–O bonding of CO adsorption IS for pure and M–doped $Fe_5C_2(100)$ (M = Cr

8 / Mn / Co / Ni / Cu) surfaces

	$Fe_5C_2(100)$	$Fe_5C_2(100)$	$Fe_5C_2(100)$	$Fe_5C_2(100)$	$Fe_5C_2(100)$	$Fe_5C_2(100)$
	–Cr	–Mn	–Fe	–Co	–Ni	–Cu
ICOHP (C–O)	-11.80	-11.94	-12.21	-12.51	-12.62	-12.73
ICOHP (M–C)	-8.82	-8.90	-8.85	-8.74	-8.65	-8.27
ICOHP (M–O)	-3.42	-2.76	-2.51	-2.29	-2.10	-1.86

2 Fig. S1 Paths of CO dissociation on Fe(100)–M surfaces, (a) toward M–atoms; (b)
3 away from M–atoms. Black spheres for C, red spheres for O, blue spheres for Fe, and
4 orange color spheres for the substitution M atoms

3 Fig. S2 The relationship between activation barrier (E_a) and the Bader charge (q_{co})
4 absorbed CO on pure and doped Fe(100) surfaces

9 The pDOS of free CO molecular and the pCOHP curves for the C–O pair are 10 displayed in **Fig. S4**. The pCOHP analysis shows that 3σ and 1π orbital contribute to 11 the bonding mainly, which are both polarized toward the oxygen atom in pDOS 12 curves. We also see that the 4σ and 5σ orbital are only slightly contributed to the 13 bonding.

14

15

- 17
- 18
- 19
- 20

4 Fig. S5 PDOS and pCOHP curves for CO adsorption IS on pure and M-doped Fe(100)
5 surfaces. The pDOS and pCOHP curves for Cr / Mn / Fe / Co / Ni / Cu doped site are
6 shown in (a.1 / a.2), (b.1 / b.2), (c.1 / c.2), (d.1 / d.2), (e.1 / e.2), (f.1 / f.2),
7 respectively

8

Fig. S5 diagrammatizes the pDOS and pCOHP curves of adsorbed CO on the transition metal doped Fe(100) surfaces. It can be seen that the bonding interaction contributes from the $4\tilde{\sigma}$, $5\tilde{\sigma}$, $1\tilde{\pi}$, and $d\tilde{\pi}$ orbitals in the adsorbed CO molecule, while the antibonding interaction between the surface atoms and the C/O atoms is contributed by the $2\tilde{\pi}^*$ orbital. In combination with the pCOHP curves, the $4\tilde{\sigma}$, $5\tilde{\sigma}$, and $1\tilde{\pi}$ states can be identified as narrow bands in the pDOS of C and O at approximately 1 –10.8, –7.6, and –6.6 eV with respect to the Fermi level. The broaden $d\tilde{\pi}$ and $2\tilde{\pi}*$ bands are present in the range from -5 to 0 eV and around the Fermi level, 2 respectively. It is greatly interesting to analysis the d^{π} and 5^{σ} bands, which is relevant 3 to the adsorption strength. Though the change is not obvious, due to only one atom is 4 doped, slight differences also can be found. From the pDOS on the Cr-doped Fe(100) 5 surface (Fig. S5 a.1), we found that the $5\overline{\sigma}$ band and the center of $d\pi$ is lower than 6 others, which result in the stronger adsorption energy (-2.45 eV). On the Cu–doped 7 Fe(100) surfaces, the intensity of 5σ is weakened and thus adsorption strength is 8 decreased (-1.97 eV). 9

- 10
- 11

13 Fig. S6 PDOS and pCOHP curves for CO adsorption IS on pure and M–doped 14 $Fe_5C_2(100)$ surfaces. The pDOS and pCOHP curves for Cr / Mn / Fe / Co / Ni / Cu

1 doped site are shown in (a.1 / a.2), (b.1 / b.2), (c.1 / c.2), (d.1 / d.2), (e.1 / e.2), (f.1 /
2 f.2), respectively

Fig. S6 shows the pDOS and pCOHP curves for adsorbed CO on the transition 3 metal doped Fe₅C₂(100) surfaces. The state of $4\overline{\sigma}$ and overlap states of $5\overline{\sigma}$ and 1π can 4 be identified in the C and O pDOS at approximately -10.8, and -7.4 eV, respectively, 5 with respect to the Fermi level. The broad $d\pi$ and 2π bands are also present in the 6 range from -5 to 0 eV and around the Fermi level, respectively. Even though the 7 pDOS and pCOHP curves are very similar, the center of d^{π} is found to be slightly 8 raised from Mn-doped to Cu-doped surface. Furthermore, the polarization of oxygen 9 in d^{π} is increased gradually from Mn-doped to Cu-doped, which indicates that the 10 electron density shifted from oxygen to metal decreased and disabled the system, as 11 illustrated in metal-O curve of pCOHP. These reasons result in the decreasing 12 adsorption strength. 13