Supporting Information

Effects of alkali metal promoters on the structure-performance relationship of CoMn catalysts for Fischer-Tropsch synthesis

Zhengjia Li ^{a,b,c}, Nan Yao ^a, Jie Cen ^a, Xiaonian Li ^{a,*},Liangshu Zhong ^{b,*}, Yuhan Sun ^b, Mingyuan He ^c

^a Institute of Industrial Catalysis, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China

^b CAS Key Laboratory of Low-carbon Conversion Science & Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, PR China

^c School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, PR China

Table of Contents

Table S1: Ionic potential		S3
Table	S2:	Elements
analysis	S	3
Table S3: Textural properties.		
Table S4: Catalytic performan	ce	
Table S5: Catalytic performan	ce	
Figure S1: MS signals		
Figure S2: XRD patterns of th	e calcined and reduced catalysts	
Figure S3: XRD patterns and p	beak fitting results	S6
Figure S4: TEM images of the	reduced catalysts	
Figure S5: Catalytic performat	nce	S8
Figure S6: Catalytic performat	nce	S9
Figure S7: Product distribution	1S	S10
Figure S8: Product distribution	1S	S10
Figure S9: Catalytic performat	nce	S11
Figure S10: Product distribution	ons	S12

Ion	Ionic Potential
Li ⁺	1.6641
Na ⁺	1.0404
K^+	0.7569
Rb ⁺	0.6724

Table S1. Ionic potential of alkali metal ions.

Table S2. Elements analysis of the unpromoted and alkali metal promoted CoMn catalysts.

Sample	Alkali concentrations (wt.%) ^a	Alkali concentrations (wt.%) ^b	Co/Mn ^b
CoMn	0.0	0.006°	2.02
CoMn-Li	0.4	0.39	2.08
CoMn-Na	0.4	0.37	2.09
CoMn-K	0.4	0.43	2.08
CoMn-Rb	0.4	0.50	2.12

^a Nominal loadings, ^b Atomic ratio measured with ICP, ^c Sodium concentration.

	BET Surfa	ce Area	Pore V	olume	Pore Dia	meter	
Sample	$(m^2/2)$	(m^2/g)		(cm^{3}/g)		(nm)	
	Reduced	Spent	Reduced	Spent	Reduced	Spent	
CoMn	51.1	56.5	0.19	0.18	11.7	11.3	
CoMn-Li	62.1	25.9	0.21	0.14	11.4	12.1	
CoMn-Na	57.8	47.7	0.20	0.17	11.6	11.0	
CoMn-K	53.5	55.6	0.17	0.24	11.3	12.7	
CoMn-Rb	45.3	59.1	0.18	0.23	12.5	12.2	

Table S3. Textural properties of the unpromoted and alkali metal promoted CoMn

Cataluat CO Conv. CO ₂ Sele.			Product Selectivity (C%, CO ₂ -free)				O/P Ratios					
Catalyst	(C%)	(C%)	CH_4	$C_2^{=}$	$C_3^{=}$	$C_4^{=}$	$C_{2-4}^{=}$	$C_{5+} + Oxy$	C ₂	C ₃	C_4	C ₂₋₄
CoMn	69.2	14.9	24.9	0.3	6.3	8.5	15.1	44.3	0.1	1.0	1.9	1.0
CoMn-Li	36.7	32.8	26.9	1.4	7.5	4.5	13.4	40.1	0.1	1.0	1.9	0.7
CoMn-Na	16.4	42.0	4.1	10.5	26.5	12.0	49.0	45.2	17.8	40.4	29.1	29.5
CoMn-K	6.4	34.3	9.3	13.0	25.3	9.6	47.9	41.0	19.7	32.7	24.1	26.1
CoMn-Rb	8.1	16.6	13.1	9.5	26.6	10.5	46.5	36.6	6.5	18.1	12.4	12.3

Table S4. Catalytic performance of the unpromoted and promoted CoMn catalyst at 250 °C, 1 bar, 3000 mL/(h g_{cat}), and $H_2/CO = 2$ (v/v).

Table S5. Catalytic performance of the unpromoted and promoted CoMn catalyst at different GHSV, 250 °C, 1 bar, and $H_2/CO = 2$ (v/v).

$CUSV(mI/(h \alpha))$	CO Comu (C0/)	CO Sala $(C0/)$	Product Selectivity (C%, CO ₂ -free)			
$GHSV (IIIL/(II^{\circ}g_{cat.}))$	CO COIIV. (C76)	CO_2 Sele. (C %)	CH_4	$C_{2-4}^{=}$	$C_{5+} + Oxy$	
3000	15.5	45.6	6.0	52.3	39.8	
4500	13.8	44.8	6.7	55.6	34.8	
6000	9.5	42.2	6.1	52.8	38.9	

Figure S1. MS signals of the alkali metal promoted CoMn catalysts in H₂-TPR: (a) CoMn-Li; (b) CoMn-Na; (c) CoMn-K; (d) CoMn-Rb.

Figure S2. XRD patterns of the calcined and reduced CoMn catalysts with different alkali metal promoters: (a) the calcined catalysts; (b) the reduced catalysts.

Figure S3. XRD patterns and peak fitting results of the spent CoMn catalysts with different alkali metal promoters: (a) step scanning with 2θ from 43° to 48° ; (b) CoMn; (c) CoMn-Li; (d) CoMn-Na; (e) CoMn-K; (f) CoMn-Rb. TOS = 24 h for all samples.

Figure S4. TEM images of the reduced CoMn catalysts with different alkali metal promoters: (a-c) CoMn; (d-f) CoMn-Li; (g-i) CoMn-Na; (j-l) CoMn-K; (m-o) CoMn-Rb.

Figure S5. Catalytic performance of the CoMn catalysts with different alkali metal promoters at different temperatures, 1 bar, 3000 ml/(h·g_{cat}), H₂/CO=2: (a) CO conversion; (b) CO₂ selectivity; (c) CH₄ selectivity; (d) Lower olefin selectivity; (e) O/P ratios of C₂₋₄; (f) C₅₊ + Oxy selectivity.

Figure S6. Catalytic performance of the CoMn catalysts with different alkali metal promoters at different H₂/CO ratios, 250 °C, 1 bar, 3000 ml/(h·g_{cat}): (a) CO conversion; (b) CO₂ selectivity; (c) CH₄ selectivity; (d) Lower olefin selectivity; (e) O/P ratios of C₂₋₄; (f) C₅₊ + Oxy selectivity.

Figure S7. Product distributions of the CoMn catalysts with different alkali metal promoters at different temperatures, 1 bar, 3000 ml/($h \cdot g_{cat}$), H₂/CO=2: (a) 240 °C; (b) 250 °C; (c) 260 °C; (d) 270 °C.

Figure S8. Product distributions of the CoMn catalysts with different alkali metal promoters at different H₂/CO ratios, 250 °C, 1 bar, 3000 ml/($h \cdot g_{cat}$): (a) H₂/CO=0.5; (b) H₂/CO=1; (c) H₂/CO=2.

Figure S9. Catalytic performance of the alkali metal promoted CoMn catalysts with different loadings, 250 °C, 1 bar, 3000 ml/($h \cdot g_{cat}$), H₂/CO=2: (a) CO conversion; (b) CO₂ selectivity; (c) CH₄ selectivity; (d) Lower olefin selectivity; (e) O/P ratios of C₂₋₄; (f) C₅₊ + Oxy selectivity.

Figure S10. Product distributions of the alkali metal promoted CoMn catalysts with different loadings, 250 °C, 1 bar, 3000 ml/(h·g_{cat}), H₂/CO=2: (a) 0.2 wt.%; (b) 0.4 wt.%; (c) 0.8 wt.%.