Supplementary Information

Ultrafine AuPd Nanoparticles Supported on Amine Functionalized Monochlortriazinyl $\boldsymbol{\beta}$-Cyclodextrin as Highly
 Active Catalysts for Hydrogen Evolution from Formic Acid Dehydrogenation

Xue Liu ${ }^{a}$, Dawei Gao ${ }^{a}$, Yue Chi ${ }^{a}$, Hongli Wang ${ }^{a,{ }^{*},}$, Zhili Wang ${ }^{b, *}$ and Zhankui

Zhao ${ }^{a}$
${ }^{\text {a }}$ Key Laboratory of Advanced Structural Materials of Ministry of Education, College of Material Science and Engineering, Changchun University of Technology, Changchun 130012, China
${ }^{\text {b }}$ Key Laboratory of Automobile Materials Ministry of Education, Department of Materials Science and Engineering, Jilin University, Changchun 130022, China
*Corresponding Authors' e-mail addresses: wanghongli@ccut.edu.cn (H. Wang); zhiliwang@jlu.edu.cn (Z. Wang);

Fig. S1 UV-vis spectra of aqueous solutions containing various species.

Fig. S2 TEM images and corresponding particle size distribution of (a) $\mathrm{Au}_{0.3} \mathrm{Pd}_{0.7}$, (b) $\mathrm{Au}_{0.3} \mathrm{Pd}_{0.7} / \mathrm{M}-\beta-\mathrm{CD}$, (c) $\mathrm{Au}_{0.3} \mathrm{Pd}_{0.7}-\mathrm{A}$, (d) $\mathrm{Au}_{0.3} \mathrm{Pd}_{0.7} / \mathrm{C}$.

Fig. S3 EDX spectrum of $\mathrm{Au}_{0.3} \mathrm{Pd}_{0.7} / \mathrm{A}-\mathrm{M}-\beta-\mathrm{CD}$.

Table S1. The metal loading amounts and the molar ratios of $\mathrm{Au} / \mathrm{Pd}$ of $\mathrm{Au}_{0.3} \mathrm{Pd}_{0.7} / \mathrm{A}-\mathrm{M}-\beta-\mathrm{CD}$ before and after cyclic tests for dehydrogenation of FA reaction.

Sample	Au loading (mg)	Pd loading (mg)	Ratio of $\mathrm{Au} / \mathrm{Pd}$ $(\mathrm{mol} / \mathrm{mol})$
$\mathrm{Au}_{0.3} \mathrm{Pd}_{0.7} / \mathrm{A}-\mathrm{M}-\beta-\mathrm{CD}$ before cyclic tests	3.215	4.070	$0.298: 0.702$
$\mathrm{Au}_{0.3} \mathrm{Pd}_{0.7} / \mathrm{A}-\mathrm{M}-\beta-\mathrm{CD}$ after cyclic tests	3.210	4.052	$0.299: 0.701$

Fig. S4 High-resolution XPS spectrum of N 1 s for $\mathrm{Au}_{0.3} \mathrm{Pd}_{0.7}-\mathrm{A}$.

Fig. S5 High-resolution XPS spectra of (a) Pd 3d and (b) Au 4f for $\mathrm{Au}_{0.3} \mathrm{Pd}_{0.7} / \mathrm{A}-\mathrm{M}-\beta-\mathrm{CD}$

Fig. S6 High-resolution XPS spectra of Au 4 f for $\mathrm{Au}_{0.3} \mathrm{Pd}_{0.7} / \mathrm{A}-\mathrm{M}-\beta-\mathrm{CD}$ and $\mathrm{Au}_{0.3} \mathrm{Pd}_{0.7} \mathrm{NPs}$.

Fig. S7 GC spectrum using TCD for the evolved gas from FA aqueous solution ($1.0 \mathrm{M}, 5.0 \mathrm{~mL}$) over $\mathrm{Au}_{0.3} \mathrm{Pd}_{0.7} / \mathrm{A}-\mathrm{M}-\beta-\mathrm{CD}$ at 323 K .

Fig. S8 GC spectrum using FID-Methanator for the (a) commercial pure CO, and (b) evolved gas from FA aqueous solution $(1.0 \mathrm{M}, 5.0 \mathrm{~mL})$ over $\mathrm{Au}_{0.3} \mathrm{Pd}_{0.7} / \mathrm{A}-\mathrm{M}-\beta-\mathrm{CD}$ at 323 K .

Fig. S9 High resolution XPS spectra of (a) Pd 3 d and (b) Au 4 f for $\mathrm{Au}_{0.3} \mathrm{Pd}_{0.7}-\mathrm{A}$ and $\mathrm{Au}_{0.3} \mathrm{Pd}_{0.7}$ NPs.

Table S2. Comparisons of catalytic activities for the dehydrogenation of FA catalyzed by previously reported heterogeneous catalysts with the as-synthesized in this work.

Catalyst	Temp. (K)	$\mathrm{n}_{\text {catalyst }} / \mathrm{n}_{\text {FA }}$	Additive	$\begin{aligned} & \text { TOF } \\ & \left(\mathrm{h}^{-1}\right) \end{aligned}$	$\begin{gathered} E a \\ (\mathrm{~kJ} / \mathrm{mol}) \end{gathered}$	Ref.
Without additive						
Au@Pd/N-mrGO	298	0.0200	None	$89.1{ }^{\text {a }}$	---	12
$\mathrm{Au}_{42} \mathrm{Pd}_{58}$	323	0.0100	None	$382^{\text {a }}$	22 ± 1	46
$\mathrm{Pd}_{\mathrm{IMP}} / \mathrm{CNF}$	303	0.0188	None	$563.2^{\text {b }}$	27.50	47
$\mathrm{Pd} / \mathrm{CN}_{0.25}$	298	0.0075	None	$752^{\text {b }}$	48.80	48
$\mathrm{Ni}_{0.4} \mathrm{Pd}_{0.6} / \mathrm{NH}_{2}-\mathrm{N}-\mathrm{rGO}$	298	0.0200	None	$954.3^{\text {a }}$	---	41
$\mathrm{Pd}-\mathrm{MnO}_{\mathrm{x}} / \mathrm{SiO}_{2}-\mathrm{NH}_{2}$	323	0.1068	None	$1300^{\text {a }}$	61.9	49
$\mathrm{Cr}_{0.4} \mathrm{Pd}_{0.6} / \mathrm{MIL}-101-\mathrm{NH}_{2}$	323	0.0200	None	$2009^{\text {a }}$	43.50	27
$\mathrm{Pd} / \mathrm{A}-\mathrm{SEP}-\mathrm{NH}_{2(0.9)}$	333	0.0315	None	$5587{ }^{\text {b }}$	44.5	50
$\mathrm{Au}_{0.3} \mathrm{Pd}_{0.7} / \mathrm{A}-\mathrm{M}-\beta-\mathrm{CD}$	323	0.0200	None	$7352^{\text {b }}$	39.50	This work
With Additive						
Pd -CNTs-in	303	0.0214	HCOONa	$1135.8^{\text {a }}$	36.60	51
Pd-B/C	303	0.0143	HCOONa	$1184^{\text {b }}$	---	7
$\mathrm{Co}_{5} \mathrm{Pd}_{5} / \mathrm{CTF}-600$	323	0.0070	HCOOK	$2129^{\text {a }}$	35.94	52
$\left(\mathrm{Co}_{6}\right) \mathrm{Ag}_{0.1} \mathrm{Pd}_{0.4} / \mathrm{RGO}$	323	0.0200	HCOONa	$2739^{\text {b }}$	43.10	53
$\mathrm{Pd} / \mathrm{S}-1$-in-K	323	0.0100	HCOONa	$3027^{\text {b }}$	39.2	54
Pd/PDA-rGO	323	0.0150	HCOONa	$3810^{\text {b }}$	54.30	55
$\left(\mathrm{Co}_{3}\right)_{\mathrm{E}} \mathrm{Au}_{0.6} \mathrm{Pd}_{0.4} / \mathrm{rGO}$	323	0.0200	HCOONa	$4840^{\text {a }}$	---	16
$\mathrm{Au}_{2} \mathrm{Pd}_{3} @(\mathrm{P}) \mathrm{N}-\mathrm{C}$	303	0.0170	HCOONa	$5400^{\text {a }}$	---	56

a. Initial TOF values calculated based on total metal.
b. Initial TOF values calculated based on total Pd atoms.

Fig. S10 (a) Plot of volume of gas over time for the dehydrogenation of FA catalyzed by $\mathrm{Au}_{0.3} \mathrm{Pd}_{0.7} / \mathrm{A}-\mathrm{M}-\beta-\mathrm{CD}$ at different temperatures; (b) Arrhenius plot of \ln TOF vs. $1 / \mathrm{T}$ for $\mathrm{Au}_{0.3} \mathrm{Pd}_{0.7} / \mathrm{A}-\mathrm{M}-\beta-\mathrm{CD}$.

Fig. S11 (a) Time-course plots for the dehydrogenation of FA ($1.0 \mathrm{M}, 5.0 \mathrm{~mL}$) catalyze by $\mathrm{Au}_{\mathrm{x}} \mathrm{Pd}_{1-\mathrm{x}} / \mathrm{A}-\mathrm{M}-\beta-\mathrm{CD}(\mathrm{x}=0,0.1,0.3,0.5,0.7,0.9$ and 1.0$)$ at 323 K and the inset shows the corresponding larger plots; (b) their related initial TOF values.

Fig. S12 Durability test of $\mathrm{Au}_{0.3} \mathrm{Pd}_{0.7} / \mathrm{A}-\mathrm{M}-\beta-\mathrm{CD}$ towards the dehydrogenation of FA .

Fig. S13 (a) XRD spectrum; (b) TEM image and the corresponding particle size distribution (inset) of $\mathrm{Au}_{0.3} \mathrm{Pd}_{0.7} / \mathrm{A}-\mathrm{M}-\beta-\mathrm{CD}$ after the $4^{\text {th }}$ run.

