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1  Catalyst preparation 

1.1  Extract alkali metal ions from Kraft lignin 

    0.2 g Kraft lignin was added into 100 mL water under vigorous stirring at 50 °C 

for 2 h. The sample was collected by washing and centrifugation, dried at 80 °C 

overnight, and pyrolyzed with the same procedure as above. 

1.2  Extract organosolv lignin 

Organosolv lignin was extracted from hardwood locust based on the previous 

method.1 The locust sawdust was provided by a local manufactory (ca. 40 mesh), and 

dried at 100 °C for 1 day prior to its use. 1.0 g locust sawdust, 30 mL ethanol and 30 

mL water were loaded into a 0.1L high-pressure autoclave and heated at 180 °C for 5 

h. Subsequently, a reddish-brown solution was collected by centrifugation, and 

solvent was separated by a rotary evaporator. Finally, the obtained organosolv lignin 

was dried at 80 °C overnight, and pyrolyzed with the same procedure as Kraft lignin. 

1.3  Synthesis of conventional graphene and graphene oxide (GO) 

Conventional graphene was fabricated by rapid heating-up of GO under high 

vacuum, in which GO was synthesized from a modified Hummer’s method described 

in our previous reports.2-3 The as-prepared GO was sharply heated to 200 °C at a ramp 

rate of 30 °C/min under a pressure lower than 2.0 Pa. The layered graphene can be 

formed through the abrupt expansion. 

2  Catalytic tests 

2.1  Reduction of nitrobenzene with 2-propanol to aniline 

0.5 mmol nitrobenzene, 8 mL 2-propanol, 3 mmol KOH and 0.05 g catalyst were 
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put into an autoclave. The reactor was purged into 0.1 MPa N2 and heated at 120 °C 

for 24 hours. The procedure for product analysis was the same as benzyl alcohol 

oxidation. 

2.2  Oxidative coupling of benzylamine 

0.05 g benzylamine, 0.05 g catalyst, 0.5 mmol KOH and 10 mL ethyl acetate were 

loaded into an autoclave. The reactor was purged into 0.5 MPa O2 and heated at 

120 °C for 10 hours. The same method for product analysis was used as above. 
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Scheme S1  Chemical structure of lignin. 
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Fig. S1  TEM and HRTEM images of G900. 
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Fig. S2  TEM and HRTEM images (a to c) of G800, (d to f) G700 and (g to i) G600. 
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Fig. S3  (a) XRD patterns of lignin and related carbon materials at various annealing 

temperature. (b) Raman spectra of various carbon materials. The horizontal axis is 

shortened to clearly observe the 2D peaks. 
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Fig. S4  (a) N2 adsorption-desorption isotherm and (b) pore size distribution of 

G1000. 
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Fig. S5  S 2p XPS peaks of (a) G600, (b) G700, (c) G800 and (d) G900. 
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Fig. S6  O 1s XPS peaks of G600 (a), G700 (b), G800 (c) and G900 (d).  
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Fig. S7  Extended TEM (a) and HRTEM (b) images for lignin pyrolysis at 250 °C 

for 2 h. 
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Fig. S8  Extended TEM (a) and HRTEM (b) images for lignin pyrolysis from room 

temperature to 1000 °C 
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Fig. S9  Extended TEM (a) and HRTEM (b) images for Kraft lignin pyrolysis at 

1000 °C for 3 h. 
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Fig. S10  TEM (a) and HRTEM (b) images for annealing Kraft lignin after its 

washing. 
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Fig. S11  TEM (a) and HRTEM (b) images for annealing organosolv lignin. 
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Fig. S12  TEM and HRTEM images of spent G1000. 
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Fig. S13  Catalytic performance for nitrobenzene reduction with 2-propanol to 

aniline over G1000. Reaction conditions: 0.5 mmol nitrobenzene, 0.05 g catalyst, 3 

mmol KOH, 8 mL 2-propanol, 120 °C, 24 h, 0.1 MPa N2. 
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Fig. S14  Catalytic performance for oxidative coupling benzylamine to imine over 

G1000. Reaction conditions: 0.05 g benzylamine, 0.05 g catalyst, 0.5 mmol KOH, 10 

mL ethyl acetate, 120 °C, 10 h, 0.5 MPa O2. 
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Fig. S15  (a) Optimised graphene model for DFT calculation. (b) HOMO shape; (c) 

LOMO shape (d) PDOS plots of graphene. 
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Fig. S16  HOMO shape of S and O co-doped graphene. 
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Table S1  Textural properties of various carbon materials. 

catalyst surface 

area  

(m2 g−1) 

Micropore 

surface area 

(m2 g−1) 

Pore 

size 

(nm) 

Pore 

volume 

(cm3 g−1) 

Micropore 

volume 

(cm3 g−1) 

G600 273.8 178.3 3.8 0.034 0.085 

G700 295.2 209.6 4.1 0.042 0.108 

G800 321.1 235.2 4.7 0.062 0.115 

G900 441.6 263.7 5.2 0.073 0.120 

G1000 524.5 327.8 5.8 0.079 0.133 
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Table S2  The catalytic performance of G1000 and reported carbon-based catalysts 

in benzyl alcohol oxidation to benzaldehyde. 

Catalysts Oxidant Reaction 

temperature 

(°C) 

O2 pressure 

(MPa) 

Reaction 

time (h) 

Conversion 

(%) 

Selectivity 

(%)     

Yield 

(%) 

References 

nanoshell carbon O2 + HNO3 90 0.1 5 96 92 88.3 4 

carbon nanotube O2 + HNO3 90 0.1 5 96.2 88.3 84.9 5 

carbon nanotube O2 130 1.5 10 24.1 89.5 21.6 6 

N-doped graphene O2 70 0.1 10 12.8 100 12.8 7 

graphene oxide air 150 0.1 24 97 87.6 85 8 

50 wt% P-doped 

carbon 

O2 100 0.1 24 56.1 95.7 53.7 9 

graphene O2 120 0.5 5 25.5 95.8 24.4 this work 

G1000 O2 120 0.5 5 99.2 96.7 95.9 this work 

  



23 

 

References 

1  P. Ferrini and R. Rinaldi, Angew. Chem, Int. Ed., 2014, 53, 8634-8639. 

2  S. Zhu, Y. Cen, M. Yang, J. Guo, C. Chen, J. Wang and W. Fan, Appl. Catal. B: 

Environ., 2017, 211, 89-97. 

3  S. Zhu, C. Chen, Y. Xue, J. Wu, J. Wang and W. Fan, ChemCatChem, 2014, 6, 

3080-3083. 

4  Y. Kuang, N. M. Islam, Y. Nabae, T. Hayakawa and M.-a. Kakimoto, Angew. 

Chem. Inter. Ed., 2010, 49, 436-440. 

5  J. Luo, F. Peng, H. Yu and H. Wang, Chem. Eng. J., 2012, 204-206, 98-106. 

6  J. Luo, H. Yu, H. Wang, H. Wang and F. Peng, Chem. Eng. J., 2014, 240, 434-442. 

7  J. Long, X. Xie, J. Xu, Q. Gu, L. Chen and X. Wang, ACS Catal., 2012, 2, 

622-631. 

8  D. R. Dreyer, H. P. Jia and C. W. Bielawski, Angew. Chem. Inter. Ed., 2010, 49, 

6813-6816. 

9  M.A. Patel, F. Luo, M.R. Khoshi, E. Rabie, Q. Zhang, C.R. Flach, R. Mendelsohn, 

E. Garfunkel, M. Szostak and H. He, ACS Nano, 2016, 10, 2305-2315. 

 

 


