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General Information

Materials

All chemicals used in this work are commercially available unless otherwise noted, and were used as

received.
Instrumentation

UV-Vis spectroscopy was carried out in an UV-Visible spectrophotometer Varian Cary 50 Bio using
Ix1 cm quartz cuvettes. Diffuse reflectance spectroscopy was performed in an Agilent Cary 7000

spectrophotometer using the UV-Vis-NIR Diffuse Reflectance Accessory.

Fluorescence spectroscopy was carried out in a Horiba/PTI spectrofluorimeter with a Xenon lamp, an
LPS-220 Lamp Power Supply, a MD-5020 motor driver and a SC-500 shutter controller. Solid-state
emission spectra were acquired in a Perkin Elmer Luminescence Spectrometer LS50 by using a front-face

support and quartz disc as sample holders.

Ruthenium loading was determined by Inductively Coupled Plasma Optical Emission 70 Spectrometry
(ICP-OES), using an Agilent Vista Pro ICP Emission Spectrometer. The Ru emission line at 240.272 nm
was used for quantification. Samples were prepared as duplicates as follow: 100 mg of glass wool samples
were added to 1.5 mL of aqua regia (HCI:HNOs3 3:1) and sonicated for 1 h. Then, the samples were heated
to 60 °C for 12 h. The resulted mixture was concentrated to half of the volume. The supernatant was
transferred to another tube, and the solid residue was washed 5x with 1 mL miliQ water and the solution
attained a final volume of 10 mL. ICP-OES analysis of the reaction mixtures was performed as follows:
after 6h of reaction in the presence of 50 mg of GW@RuP (or GW@RuB), the catalyst was filtered off and
washed with MeCN (3x1mL) and water (3x1mL). The solvent of the reaction mixture (combined with the
washing solvents) was completely dried. The residue was dissolved in 0.5 mL of aqua regia at 80 °C for 6h

and then the volume was completed to 5 mL using deionized water.

X-ray Photoelectron Spectroscopy (XPS) analysis was performed on a Kratos Nova AXIS
spectrometer equipped with an Al X-ray source. The samples were mounted onto a SEM mount (with the
pins cut off) using double-sided adhesive Cu tape. After removing excess glass fibers, the SEM mount was
attached to the coated aluminum platen using double-sided adhesive Cu tape and was kept under high
vacuum (10”° Torr) overnight inside the preparation chamber before they were transferred into the analysis
chamber (ultrahigh vacuum, 10™'° Torr) of the spectrometer. The XPS data were collected using AlK,
radiation at 1486.69 eV (150 W, 15 kV), charge neutralizer and a delay-line detector (DLD) consisting of

three multi-channel plates. Survey spectra were recorded from -5 to 1200 eV at a pass energy of 160 eV
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(number of sweeps: 2) using an energy step size of 1 eV and a dwell time of 200 ms. High resolution spectra
for Oy, Nis, Cis and Siy, were recorded in the appropriate regions at a pass energy of 20 eV (number of
sweeps: Ois, 5; Nis, 15; Cis, 10; Sizp, 10) using a dwell time of 300 ms and an energy step size of 0.1 eV.
The analyzed area on the specimens was about 300 x 700 pm? (lens mode: FOV 1) at this position. The
incident angle (X-ray source/sample) is the magic angle of 54.74° and the take-off angle (sample/detector)
is 90°. All spectra were calibrated at the C 1s signal at 284.8 eV and fittings obtained using a Gaussian 30%

Laurentian and a Shirley baseline.

Gas chromatography coupled to mass spectrometry detection (GC-MS) was carried out by using an Agilent
system with a 6890N Network GC System coupled to a 5973 inert Mass Selective Detector. 'H and "*C
NMR analyses were carried out in a The Bruker Avance II 400MHz NMR spectrometer. HRMS was
performed in a BioApex II 70e FTICR spectrometer, Bruker, using the APCI module.
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Materials Characterization

Diffuse Reflectance Spectroscopy
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Figure S3. Diffuse reflectance spectra of (A) GW@AQ, (B) GW@EY, (C) GW@RB and (D) GW*,
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Fluorescence Spectroscopy
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Figure S5. Fluorescence spectra of GW@EY (left) and GW@RB (right).
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Figure S6. Fluorescence spectra of GW@RuB (black), GW@RuB-Ads (blue) and GW* (red).
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X-ray Photoelectron Spectroscopy
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Figure S7. XPS survey spectrum of GW*,
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Figure S8. XPS survey spectrum of GW@RuB.
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Figure S9. XPS survey spectrum of GW@RuP.
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Figure S10. XPS survey spectrum of GW@AQ.
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Figure S11. XPS survey spectrum of GW@RB.
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Figure S12. XPS survey spectrum of GW@EY.
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Figure S13. N 1s HR-XPS spectra of (A) GW*, (B) GW@RuB, and (C) GW@RuP.
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Figure S14. High-Resolution XPS spectra of GW@AQ.
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Figure S15. High-Resolution XPS spectra of GW@RB.
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Figure S16. High-Resolution XPS spectra of GW@EY.
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NMR Spectroscopy
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Figure S17. "H NMR spectrum of phenol obtained by oxidative hydroxylation of phenylboronic acid.

*maleic acid (7.4 mg).
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Figure S18. "H NMR spectrum of 4-fluorophenol obtained by oxidative hydroxylation

fluorophenylboronic acid. *maleic acid (9.3 mg).
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Figure S19. "H NMR spectrum of 4-chlorophenol obtained by oxidative hydroxylation of 4-

chlorophenylboronic acid. *maleic acid (9.2 mg).
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Figure S20. "H NMR spectrum of 4-methoxyphenol obtained by oxidative hydroxylation of 4-methoxy

phenylboronic acid. *maleic acid (10.2 mg).
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Figure S21. "H NMR spectrum of 4-(trifluoromethyl)phenol obtained by oxidative hydroxylation of 4-
(trifluoromethyl)phenylboronic acid. *maleic acid (36 mg).
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Figure S22. "H NMR spectrum of RuB.
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ESI-HRMS
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Additional Results
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Figure S27. Absorption spectra of Ru-complexes versus MB.
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Figure S28. Emission spectrum of the reaction mixture of the hydroxylation of phenylboronic acid 6h

after irradiation (blue LED) using GW(@RuB as catalyst. Notice there is no evidence of RuB leaching

during reaction (cft. inset: Emission spectrum of GW@RuB).
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Figure S29. Kinetics of the photooxidation of a 100 uM DMA solution using GW@RuB as catalyst.
Solvent: MeCN.
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GW@RuB.

S24



1.1

0.9
0.8
0.7 1
0.6+

I,

0.5
0.4

4
0.3+ . T T .

0 20 40 60 80 100 120
Time (min)

Figure S31. Decay of the DMA emission intensity versus time of irradiation (Blue LED) using GW@RuB
as catalyst. General Procedure: 15 min irradiation of 5 mL of a DMA solution in the presence of 5 mg of
GW@RuB. Filtration to remove the catalyst and further 15 min irradiation of the solution (grey area).
Resubmission of catalyst into the solution and another 15 min irradiation cycle. Notice negligible
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Excitation Sources
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Figure S34. Emission spectra of (fop) blue LED —working intensity: 1235 W/m?; (middle) green LED —
working intensity: 855 W/m?; (bottom) white light LED —working intensity: 2385 W/m?.
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