Supporting Information

Tunable Surface Modification of Hematite Photoanode by Co(salen)-Based Cocatalyst for Boosting Photoelectrochemical Performance

Ruiling Wang,^a Yasutaka Kuwahara,^{a,b,c} Kohsuke Mori,^{a,b} Yuyu Bu,^d and Hiromi Yamashita^{*,a,b}

^a Division of Material and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1

Yamadaoka, Suita, Osaka 565-0871, Japan

^b Elements Strategy Initiative for Catalysts & Batteries Kyoto University, ESICB, Kyoto University, Katsura, Kyoto

615-8520, Japan

^c JST, PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan

^d Key Laboratory of Wide Bang-gap Semiconductor Materials and Devices, School of Microelectronics, Xidian University, Xi'an 710071, China

Corresponding Author

* Hiromi Yamashita (yamashita@mat.eng.osaka-u.ac.jp)

Supplementary Figures and Tables

Figure S1. Cross-section FE-SEM image of α -Fe₂O₃/Co(salen)-250.

Figure S2. TEM images of (a) α -Fe₂O₃, (b) α -Fe₂O₃/Co(salen)-250, (c) α -Fe₂O₃/Co(salen)-350 and (d) α -Fe₂O₃/Co(salen)-450.

Figure S3. TEM-EDS mapping images of (a) α -Fe₂O₃/Co(salen)-250 and (b) α -Fe₂O₃/Co(salen)-350 refer to the signals of Fe, O and Co, respectively.

Figure S4. XRD of α -Fe₂O₃, α -Fe₂O₃/Co(salen)-250, α -Fe₂O₃/Co(salen)-350 and α -Fe₂O₃/Co(salen)-450.

Figure S5. UV-Visible diffuse reflectance spectra of α -Fe₂O₃, α -Fe₂O₃/Co(salen)-250, α -Fe₂O₃/Co(salen)-350 and α -Fe₂O₃/Co(salen)-450.

Figure S6. C 1s XPS spectra of Co(salen), α -Fe₂O₃, α -Fe₂O₃/Co(salen)-250, α -Fe₂O₃/Co(salen)-350 and α -Fe₂O₃/Co(salen)-450.

Figure S7. XPS spectra of α -Fe₂O₃, α -Fe₂O₃/Co(salen)-250, α -Fe₂O₃/Co(salen)-350 and α -Fe₂O₃/Co(salen)-450. (a) The total survey spectra, (b) Fe 2p, (c) O 1s.

Figure S8. Photo-induced liner sweep voltammetry (LSV) curves of α -Fe₂O₃ and α -Fe₂O₃/Co(salen)-250 photoanodes with different Co(salen) contents in 1 M NaOH solution under the simulated solar light source illumination (100 mW/cm²).

Figure S9. Photo-induced liner sweep voltammetry (LSV) curves of α -Fe₂O₃, α -Fe₂O₃/Co(salen)-250, α -Fe₂O₃/Co(salen)-350 and α -Fe₂O₃/Co(salen)-450 photoanodes in 1 M NaOH solution under the simulated solar light source illumination (100 mW/cm²).

Figure S10. Photo-induced liner sweep voltammetry (LSV) curves of α -Fe₂O₃ and α -Fe₂O₃/Co(salen)-250 and α -Fe₂O₃/Co(salt)-250 photoanodes in 1 M NaOH solution under the simulated solar light source illumination (100 mW/cm²).

Figure S11. XPS spectra of α -Fe₂O₃/Co(salt)-250. (a) The total survey spectra, (b) Co 2p.

Figure S12. Photo-induced liner sweep voltammetry (LSV) curves of photoanodes in 1 M NaOH solution and 1 M NaOH with 0.5 M H₂O₂ solution under the simulated solar light source illumination (100 mW/cm²). (a) α -Fe₂O₃, (b) α -Fe₂O₃/Co(salen)-250, (c) α -Fe₂O₃/Co(salen)-350 and (d) α -Fe₂O₃/Co(salen)-450.

Figure S13. The equivalent circuit of EIS spectra.

Table	S1.	Comparison	of	our	photoanode	to	other	hematite	photoanodes	coupled	Co-based
cocata	lysts	i									

Catalyst	Electrolyte	J with	J without	Ratio	Onset potential	Ref.
		cocatalyst ^{a)}	cocatalyst		cathodic shift ^{b)}	
Co-N-C- Fe ₂ O ₃	1 M NaOH	0.98	0.57	1.72	180	This work
Co ₃ O ₄ - Fe ₂ O ₃	1 M NaOH	1.2	0.72	1.67	40	1
C/Co ₃ O ₄ - Fe ₂ O ₃	1 M NaOH	1.48	0.83	1.78	60	2
CoPi- Fe ₂ O ₃	1 M NaOH	1.28	0.856	1.50	100	3
CoPi- Fe ₂ O ₃	1 M NaOH	0.6	0.41	1.46	350	4
CoO _x - Fe ₂ O ₃	1 М КОН	0.65	0.25	2.6	250	5
CoO _x (POM)- Fe ₂ O ₃	1 M NaOH	2.4	1.2	2.0	100	6
CoFeO _x - Fe ₂ O ₃	1 M NaOH	1.2	0.88	1.36	200	7

a) J (mA/cm²) at 1.23 V vs. RHE under AM 1.5G 100 mW/cm²; b) Onset potential cathodic shift (mV).

Table S2. Fitted parameters of the EIS of α -Fe₂O₃, α -Fe₂O₃/Co(salen)-250, α -Fe₂O₃/Co(salen)-350 and α -Fe₂O₃/Co(salen)-450 photoanodes under dark.

Sample	R _{sol} (Ω cm-²)	R _{ss} (Ω cm ⁻²)	$R_t (\Omega \text{ cm}^{-2})$
α-Fe ₂ O ₃	19.5	87.6 k	3.08 k
α -Fe ₂ O ₃ /Co(salen)-250	23.4	24.6 k	1.32 k
α -Fe ₂ O ₃ /Co(salen)-350	20.3	13.5 k	1.25 k
α -Fe ₂ O _{3/} Co(salen)-450	18.2	13.6 k	2.16 k

Table S3. Fitted parameters of the EIS of α -Fe₂O₃, α -Fe₂O₃/Co(salen)-250, α -Fe₂O₃/Co(salen)-350 and α -Fe₂O₃/Co(salen)-450 photoanodes under irradiation.

Sample	R _{sol} (Ω cm ⁻²)	R _{ss} (Ω cm ⁻²)	$R_t (\Omega \text{ cm}^{-2})$
α-Fe ₂ O ₃	18.9	16.6 k	57.0
α -Fe ₂ O ₃ /Co(salen)-250	20.0	317	95.3
α -Fe ₂ O ₃ /Co(salen)-350	22.3	449	67.5
α -Fe ₂ O ₃ /Co(salen)-450	19.4	445	70.5

Supplementary References

- 1 P. Zhang, T. Wang, X. Chang, L. Zhang and J. Gong, Angew. Chem. Int. Ed., 2016, 55, 5851–5855.
- 2 L. Xi, P. D. Tran, S. Y. Chiam, P. S. Bassi, W. F. Mak, H. K. Mulmudi, S. K. Batabyal, J. Barber, J. S. C. Loo and L. H. Wong, J. Phys. C hem. C, 2012, **116**, 13884-13889.
- 3 J. Xiao, H. Huang, Q. Huang, L. Zhao, X. Li, X. Hou and H. Chen, J. Catal., 2017, **350**, 48-55.
- 4 D. K. Zhong, J. Sun, H. Inumaru and D. R. Gamelin, J. Am. Chem. Soc., 2009, 131, 6086-6087.
- 5 C. Du, J. Wang, X. Liu, J. Yang, K. Cao, Y. Wen, R. Chen and B. Shan, *Phys. Chem. Chem. Phys.*, 2017, **19**, 14178-14184.
- 6 X. Cao, Y. Wang, J. Lin and Y. Ding, J. Mater. Chem. A., 2019, 7, 6294-6303.
- 7 J. Zhang, R. García-Rodríguez, P. Cameron and S. Eslava, Energy Environ. Sci., 2018, 11, 2972–2984.