Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2020

Supporting Information

Porous Mn-based Oxides for Complete Ethanol and Toluene Catalytic Oxidation: The Relationship between Structure and Performance

Shaohua Chen, ^a Hui Li, ^b Yu Hao, ^a Rui Chen, ^a Tiehong Chen ^{a, c}*

^aInstitute of New Catalytic Materials Science, School of Materials Science and Engineering, Key

Laboratory of Advanced Energy Materials Chemistry (MOE), Nankai University, Tianjin 300350,

People's Republic China.

^bCollege of Mechanical and Electrical Engineering, Jiaxing University, Jiaxing 314001, People's

Republic China.

^cCollaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300071,

People's Republic China.

*Corresponding author: Tiehong Chen

Email address: chenth@nankai.edu.cn.

Contents: Number of pages: 9 Figures: 5 Table: 2

Fig. S1 XRD patterns of MnO_x prepared by organic solvent combustion at different calcination temperatures.

Fig. S2 N_2 adsorption-desorption isotherms at 77K and BJH pore size distribution of SmMn₂O₅, SmMnO₃, Mn₃O₄ and Mn₂O₃.

Fig. S3 TEM images of the (a) MnOx-400, (b) Sm-MnOx=0.3-400, (c) Sm-MnOx=0.3-600, (d) Cu-MnOx=0.3-400. 0.3 represents the molar ratio of (Sm or Cu)/Mn, 400 or 600 represents the calcination temperature.

Sm-MnOx=0.3 (Sm/Mn = 0.3) was prepared using same method at 400 °C and 600 °C. Compared with the MnO_x, abundant mesopore was formed in Sm-MnOx=0.3-400. With the calcination temperature increasing, obvious macropore was observed in Sm-MnO_x=0.3-600.

The precursors in organic solvent combustion are ethylene glycol, $Mn(Ac)_2$ and $Sm(NO_3)_3$, respectively. The decomposition temperatures of these precursors are 197.3, 118.2 and 291 °C, respectively. Therefore, ethylene glycol and $Mn(Ac)_2$ decomposed firstly during the combustion. After that, remaining $Sm(NO_3)_3$ would continue to decompose as the temperature increases, and mesopore was formed due to a large amount of gas released. The increase in calcination temperature accelerates the decomposition of $Sm(NO_3)_3$ and results in the formation of macropore. As a contrast, $Sm(NO_3)_3$ was replaced by $Cu(NO_3)_2$, whose decomposition temperature is only 170 °C. No mesoporous or macroporous formation was observed.

Fig. S4 Survey spectra in the XPS measurement for SmMn₂O₅, SmMnO₃, Mn₃O₄ and Mn₂O₃.

Fig. S5 The theoretical model on the surface of SmMn_2O_5 , SmMn_3 , Mn_3O_4 and Mn_2O_3 from top and side view. Only the surface atoms are showed to be more easily distinguishable, in which light green, purple, blue, dark green, dark blue, and red atom represent Sm, Mn_{oct} , Mn_{pyr} , Mn_{tet} , a random six-coordinate Mn and O atom, respectively.

-	Sample-temperature (°C)	Total Pore Volume (cc/g)	Avg. Pore Diameter (nm)	$SSA(m^2/g)$		
-	MnO_x -300	0.17	21.5	31		
	MnO_x -400	0.11	27.1	17		
	MnO_x -600	0.15	33.8	18		
	MnO_x -700	0.02	14.7	6		
	MnO _x -900	0.01	8.6	4		

Table S1. Textural characterization of MnO_x by organic solvent combustion at different calcinationtemperatures.

Complex	Reduction temperature (°C)				H_2 consumption (µmol)					
Samples	Peak1	Peak2	Peak3	Peak4	•	Peak1	Peak2	Peak3	Peak4	Total
SmMn ₂ O ₅	200	408	499	-		38.5	122.1	57.7	-	218.3
SmMnO ₃	234	354	453	673		16.0	18.5	31.8	77.1	143.4
Mn ₃ O ₄	247	279	419	459		50.1	35.4	160.6	57.0	303.1
Mn ₂ O ₃	230	371	466	-		20.1	171.5	190.0	-	381.6

Table S2. Reduction temperature and H_2 consumption of different Mn-based oxides.